
I September 1990 UILU-ENG-90-2242 0
DAC-25

Analog and Digital Circuits

00

II

I< iCHARM: HIERARCHICAL
I CMOS CIRCUIT EXTRACTION

WITH POWER BUSI EXTRACTION
I
I

Russell Makoto Iimura

I

I jIGC
C 0 91990

I {;

i Coordinated Science Laboratory
College of Engineering

I UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

I Approved for Public Release. Distribution Unlimited. - . -

.. !, -' I -

IECUIITY CLSICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Me N0 i

Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified None

I. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAJLABILITY OF REPORT
Approved for public release;

. CLASSIFIC DOWNGRIdistribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2242 (DAC-25)

6 .NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (pf tapicale) Office of Naval Research &
University of Illinois N/A Rome Air Development Center

k. ADDRESS (Cfty. Staft. and ZIP Code) 7b. ADDRESS(Cy, State. and ZIP CodeJ

1101 W. Springfield Ave. Arlington, VA 22217
Urbana, IL 61801 Griffiss Air Force Base, NY 13441-5700

Ia. NAME OF FUNDING/SPONSORING l8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMIER
ORGANIZATION Joint Services (Of appikable)
Electronics Program & RADc F30602-88-D-0028 N00014-90-J-1270

Sc. ADDRESS (CNZV Stato. a&W ZIP C*) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK RK UNITArlington, VA 22217 ELEMENT NO. . No. aCESsiON NO.

Griffiss Air Force Base, NY 13441-5700

11. TITLE (biftule S"mWey OCNaficadton)

iCHARM: Hierarchical CMOS Circuit Extraction with Power Bus Extraction

12. PERSONAL AUTHOR(S)
limura, Russell Makoto

13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (YdM M ad, Dy) l5. PAGE COUNT
Technical , FROM 19 TO I Qq91 I 90 Sep 5 I 110

I. SUPPLEMENTARY NOTATION

17. COSATI CODES 1. SUBJECT TERMS (Cnfidw an evw Nt .wcvin and idendtyt by blck w
FIELD GROUP SUB-GROUP Circuit extraction, hierarchical extraction, circuit

parasitics, reliability estimation, database, design
I I framework.

IS. ABSTRACT (onwan on 'vs v if neess and idmnuf, by Mock nunb,)

Circuit extraction is critical in the validation of VLSI circuits since it provides the link between
the design and the simulation phases. The use of hierarchical design techniques and hierarchical
analysis methods increases design productivity. In this thesis, the development of iCHARM, a
hierarchical circuit extractor, is described. The extractor takes its input layout in either the CIF for-
mat or the Oct VLSI database format. The extractor produces circuit parasitics including capaci-
tances and resistances. A power bus extraction mode has been developed to calculate power bus
currents for reliability estimation. The primary contribution of this work is a method to extract a cir-
cuit hierarchically without flattening and with minimal overhead. A full-chip layout was used to test
the extractor's functionality and to allow a comparison of the hierarchical and flat extraction modes.

I0. DISTRIBUTION I AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIEDIAJNUMITED 03 SAME AS RPT. C3 OTIC USERS Unclassified

22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE Ondud Ar. Coe) i2c. OFFICE SYMBOL

00 Form 1473, JUN 84 frvious edti n at t. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

I

1 iCHARM: HIERARCHICAL CMOS CIRCUIT EXTRACTION
WITH POWER BUS EXTRACTION

U
Accession For

3 -NTIS GRA&I
BY DTIC TAB

Unannounced El
RUSSELL MAKOTO IIMURA Justificatl o

B.S., University of Colorado, 1984 By

Distribution/_

Availability Codes

Avail iuJd/or
Dist Special

THESIS j

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1990

U II

3 Urbana, Illinois

U
I
I

I

I ABSTRACT

I

Circuit extraction is critical in the validation of VLSI circuits since it provides the link

j between the design and the simulation phases. The use of hierarchical design techniques and

hierarchical analysis methods increases design productivity. In this thesis, the development of

iCHARM, a hierarchical circuit extractor, is described. The extractor takes its input layout in

either the CIF format or the Oct VLSI database format. The extractor produces circuit parasitics

including capacitances and resistances. A power bus extraction mode has been developed to cal-

culate power bus currents for reliability estimation. The primary contribution of this work is a

method to extract a circuit hierarchically without flattening and with minimal overhead. A full-

chip layout was used to test the extractor's functionality and to allow a comparison of the hierar-

chical and flat extraction modes.

I
I
I
I
I
I

iv

ACKNOWLEDGEMENTS

I would like thank my advisor, Professor Ibrahim Hajj, for his patience and guidance

throughout the development of my graduate work. This work owes a great deal to Krishna Bel-

khale who developed the basis for the extractor program described here. I also, would like to

recognize my colleagues and officemates in the Circuits and Systems Group for their assistance

and helpfulness. Finally I would like to thank my family for their encouragement and example,

and the friends that I have made at the University of Illinois, especially Holly Sakane, for all of

their support through the stresses of the final months.

j This work was funded by the Joint Services Electronics Program and by the Rome Air

Development Center of the U.S. Air Force.

I
I
I
I
I
I

Iv

U TABLE OF CONTENTS

NCHAPTER PAGE

3I INTRODUCTION .. I

1.1 Design of VLSI Circuits .. I

31.2 Circuit Extraction... 3

1.3 Features of ICHARM ... 4

11.3.1 Capabilities of ICHARM .. 5

1.4 Overview of the Thesis ... 7

2 INPUT TO CIRCUIT EXTRACTION ... 8

12.1 Hierarchical Data Structures.. 8

32.2 CIF Input Format... 10

2.3 Transformation of Nested Cells and Flattening the Hierarchy............... 12

2.4 CIF Input Module... 15

2.5 Shortcomings of CIF.. 15

32.6 The Oct/Vein System ... 16

2.7 The Oct Database and Terminology ... 18

12.8 Oct Integration .. 22

2.8.1 Oct access routines... 22

32.8.2 Oct input module ... 23

33 CIRCUIT EXTRACTION ALG;ORTHMS .. 26

3.1 The Flat Circuit Extraction Process.. 26

33.2 Geometric Extraction Algorithms.. 28

IA
3.2.1 K-D trees... 28

I3.2.2 Scanline algorithms .. 30

3.2.3 Corner stitching .. 32

13.2.4 The geometric extraction algorithm in iCHARM.................... 32

j4 ICHARM FLAT EXTRACTION ... 34

4.1 Geometric Flat Extraction... 34

14.1.1 Geometric data structures .. 35

4.1.2 Basic scanline extraction procedure..................................... 37

14.1.3 Scanline net extraction .. 40

4.1.4 Scanline transistor extraction .. 43

14.2 Parasitic Flat Extraction... 45

4.2.1 Data structures for parasitic extraction 46

4.2.2 Capacitance extraction.. 48

34.2.3 Resistance extraction .. 50

4.3 Power Bus Extraction .. 55

4.3.1 A reliability analysis system .. 55

4.3.2 iCHARM's power bus extraction mode 58

5 iCHARM HIERARCHICAL EXTRACTION .. 62

35.1 Hierarchical Geometric Extraction .. 62

5.1.1 Existing approaches to hierarchical extraction....................... 63

35.1.2 The iCHARM implementation... 65

5.2 Hierarchical Parasitic Extration.. 80

15.2.1 Hierarchical capacitance extraction 81

5.2.2 Hierarchical resistance extraction....................................... 84

15.3 Hierarchical Power Bus Extractior.. 84

6 RESULTS AND CONCLUSIONS .. 87

vii

6.1 Test Results .. 87

6.1.1 The 2uchp test chip .. 87

6.1.2 The 2uchp test results ... 89

6.1.3 Interpretation of the test results ... 91

6.2 Future Extensions... 92

I6.2.1 Output results in Oct .. 92

6.2.2 Coupling capacitance .. 92

16.2.3 Multiprocessor implementation.. 93

6.2.4 Power bus extraction and modeling..................................... 93

6.3 Conclusions .. 93

IAPPENDIX iCHARNI USER MANUAL... 96

A.1 Running iCHARM ... 96

A.2 Input Format.. 98

A.2.1 CIF format.. 98

A.2.2 Oct format .. 99

A.2.3 Defining a new technology in Oct 99

A.3 Technology File .. 100

A.4 Layer Names.. 102

jREFERENCES ... 103

I

I CHAPTER 1

INTRODUCTION

1.1. Design of VLSI Circuits

The high level of integration in recent VLSI circuits - up to one million transistors in a sin-3 gle chip [7] - has required the use of increasingly sophisticated Computer-Aided Design (CAD)

tools. These CAD programs are used to analyze and verify the circuit and layout design of a chip

3 before it is actually made, since any changes after fabrication add significantly to the develop-

ment cost of the chip. In addition to ensuring that a chip works "in first silicon," the use of

automated methods also shortens the chip's "time-to-market" which can add to its profitability.

This thesis is concerned with the problem of circuit extraction, which is the transformation

3 of layout information into circuit information. After extraction, the circut is simulated before it

is fabricated to verify that it performs as intended.

3In addition to CAD, the use of hierarchy is a way to increase design productivity and reduce

the complexity of the design task. Rather than design each individual transistor, the repetition or

regularity of a design is exploited to reduce the amount of work that must be done. A cell is

defined to be the unique or atomic part of a design that needs to be designed only once. Copies

or instances of cells are made wherever the cell is needed. There are certain so-called primitives

of a cell: in circuit layout, the primitives are the mask-level geometries. Cells may contain prim-

-- itives, or instances of other cells, or a combination of both. Cells that contain no instances are

called leaf-level cells; cells that contain instances but are not the top-level cell are often called3 intermediate-level cells. A hierarchically defined cell is shown in Figure I. 1. In the figure, cell

A is the top-level cell, cells B, C, and D are intermediate cells, and cells E and F are leaf-level3 cells. The use of hierarchy in a top-down design style is particularly effective.

A top-down, hierarchical design style, as shown in Figure 1.2., involves decomposing high-

Slevel functional blocks into smaller and smaller functional units until each unit is well-defined, is

a reasonable size for a leaf-level block, and has an obvious implementation in the targetU
U

I
2 .

AU I

\\-" I

CI

I

I
Figure 1.1 - A hierarchically defined cell

I

technology (for instance in MOS, bipolar, or both). At each design level the current implementa- I
tion is verified by creating models of the design and simulating them. At the architectural level,

the models are behavioral; at the logic level, logic gates are simulated; the design is finally com- I
posed of transistors at the circuit design level. The circuit's actual implementation on silicon is

not realized until the layout or artwork design work is completed. 3
Circuit extraction provides the link between the design of artwork and its verification

through simulation. The circuit elements extracted from the actual artwork must match the 3
behavior that was previously simulated at the other levels in the top-down design process. Only

when this is achieved is it felt that there is sufficient reason to believe the chip will operate I
correctly when fabricated. I

I
I

3

Architectural Behavioral
Design Verification

Logic Logic
Design Verification

Circuit Circuit
Design Verification

Layout Layout
Design - Verification

Circuit
Extraction

Final
Layout

IFigure 1.2 - A top-down, hierarchical design process

I
1.2. Circuit Extraction

The artwork provides a ldrge measure of reality in verification; at other levels the difference

between the models and reality may be significant if the modeling is not done properly. There-

fore, it is important to accurately model the circuit implemented by the artwork. There are two

main goals for verification:

I
I

4 .

(1) functional verification

(2) performance verification 3
Functional verification ensures that the circuit at the current design level accomplishes its

desired function. Performance verification goes one step further to see if the circuit operates 3
within its timing requirements. Estimating the delays of the circuit is dependent on the design

style used as well as the technology and process of the circuit. For example, a circuit may be 3
implemented in a design style using fully complementary CMOS or Domino CMOS to trade off

ease-of-design against speed.3

To verify the circuit, extraction achieves the following:

(1) identification of active devices (transistors) 3
(2) identification of electrically connected geometries (nets)

(3) extraction of the electrical parameters of transistors (e.g., dimensions of the transistors)

(4) estimation of parasitic resistances and capacitances of the interconnection nets 3
The identification of transistors and nets is required to functionally verify the circuit. The

structural connectivity is the minimum required to verify a circuit's function. 3
On the other hand, the extraction of transistor parameters and the parasitic resistance and

capacitance of the nets connecting the transistors is needed for accurate performance 3
verification. The resistances and capacitances of the interconnection lines are termed parasitic

since they are not explicitly designed as part of the circuit but are a side effect of the electrical 3
properties of the conductor materials. As the dimensions of typical artwork shrink below one

micron, the parasitic effects begin to be more significant on circuit performance. The intercon- -
nection lines will ther begin to occupy more of the chip area relative to the size of the active

devices. As the minimum line widths shrink, the length and thus the resistances of the intercon- -
nection lines will increase. For these reasons, it is critical to accurately extract the parasitic

effects from the circuit layout for performance verification.

1.3 Features of iCHARM

This thesis describes the development of a hierarchical circuit extractor named iCHARM. 1 I
Since the extractor is hierarchical, the natural name for it could be HEX, for Hierarchical EXtractor. HEX 3

has already been used to describe an extractor in the past, so a synonym for "hex," "charm," was chosen.

3
I

5

Just as hierarchy is used to reduce the amount of work required to design a VLSI circuit, the work

done by an extractor can make use of the regularity of the circuit to reduce the analysis time. In

fact, the hierarchical partitioning of the circuit by the dcsigner is also used to do the extraction.

Hierarchical extractors analyze each unique cell of the circuit only once and refer to the previ-

ously extracted information when an instance of the cell is encountered. When the analysis is

doneflat, on the other hand, each part of the circuit is looked at with no attempt to recognize any

similarity with previously nalyzed structures.

The iCHARM program was developed using PACE, an existing extractor program written by

Krishna Belkhale, as its basis tl]. PACE contributed the flat extraction of transistors and the

parasitic extraction code to iCHARM, and was implemented on a parallel computer. The ability

to do hierarchical analysis and the enhanced input routines to read a layout from the Oct data-

base format are new contributions and are the goals of this research.

1.3.1. Capabilities of iCHARM

iCHARM is written in C, runs under UNIX 2 and has the following features:

CMOS circuits:
The extractor assumes the input layout is in CMOS technology with any number of metal

interconnection layers. A technology file is read to determine the process parameters of

each layer and the connectivity between layers.

Manhattan geometries:

iCHARM supports only rectangles as mask geometries; therefore, the extractor works only

for manhattan-style layouts, i.e., layouts where the edges of the geometries are parallel to

the x- or y- axis.

CIF and Oct input formats:

The input layout read by iCHARM is described in either the CIF (Caltech Intermediate Form)

format or in the Oct database format. The two formats and their input routines are

described in more detail in Chapter 2.

3 Spice output format:

The extracted circuit description is output in the Spice circuit simulator format. If the

S 2 UNIX is a trademark of AT&T Corp.

I
I

6

extraction is done hierarchically, each cell extracted generates a .SUB--KT card. An option

to output the circuit in the Oct format also is envisioned.

Scanline algorithm:

The input layout is represented internally in iCHARM in terms of rectangles. A scanline

algorithm is employed to carry out the extraction process. This is described in detail in this

thesis.

The program may be run in several modes as shown in Figure 1.3, and described as fol-

lows:

(1) 'irst, the user has the option of running the extractor in flat or hierarchical extraction mode.

If there is a high degree of regularity in the circuit (if the circuit h- , just a few cells but

perhaps a large number of instances), then the hierarchical mode should run faster and use

less run-time memory than an equivalent run in the flat extraction mode.

(2) The user also has a choice of the parasitics of the interconnection lines that may be

extracted. The default mode is to extract each net's substrate capacitance (the capacitance

Hierarchical
Extraction

ge,

",,,'Fat Extrac to

Capacitance; NoPwe u
Er oResistance, " Power Bus

Capacitance Extraction

Extraction

Figure 1.3 - Run-time options of iCHARM

1 7
between the net and ground). In addition to the capacitance, the user may extract the resistance

through each interconnection net.

(1) iCHARM has a special mode to extract the mask-level rectangles of the power bus nets (typi-

cally Vdd and GND). This mode does additional processing of the power bus nets for subse-

quent analysis by other programs to do reliability estimation. This is described in Section

4.3.

1.4. Overview of the Thesis

This thesis consists of six chapters. Chapter 2 presents the input routines that read the input

layout and create hierarchical data structures. iCHARM reads the layout description in either the

CIF or Oct data formats. Chapter 3 describes the circuit extraction process in more detail. Vari-

ous extraction algorithms are presented along with the method employed by iChARM, a scanline

algorithm. The implementational details of iCHARM are split into Chapters 4 and 5. The flat

extraction techniques to extract the basic connectivity and circuit parasitics are presented first.

Hierarchical extraction techniques are covered in the Chapter 5. In Chapter 6, the results of the

testing of iCHARM using a complete chip layout are presented. The thesis ends with a list of pos-

sible extensions to the extractor and some concluding remarks.

8

CHAPTER 2

INPUT TO CIRCUIT EXTRACTION

The input to an extractor consists of the mask geometries of the layout. In the case of

iCHARM, the layout consists solely of rectangles. iCHARM supports two input formats to

describe the layout: the CIF format and the Oct database format. During the input phase of I
iCHARM, the input layout is read in and internal data structures for the program are created. In

this chapter, the hierarchical data structures that are created from the layout are described first.

Then, the two input formats are presented along with a brief description of the procedure used to

create the data structures from each of the input formats.

2.1. Hierarchical Data Structures

In order to do hierarchical extraction, it is important for iCHARM to preserve the hierarchi- 3
cal structure of the layout that was created by the user. In iCHARM, the two data structures

representing the hierarchical layout are the cell and instance structures. The C-language

definitions of these basic structures are shown in Figure 2.1.

The cell struct contains the definition of a cell. The cell number (or symbol index) serves I
as the identifier for the cell. The rectlist field of the cell contains a list of the layout rectangles

for the cell. The bounding box for the cell, the smallest rectangle that encloses all of the layout 3
rectangles of the cell, is computed when all of the rectangles of the cell are read in. The coordi-

nates of the cell bounding box are placed in the bound array. The instlist field of the cell has a

list of the instances of the cell. The extraction process produces a list of nets and transistors for

the cell (the netlist and tranlist fields); the other fields of the cell struct will be explained later as 3
needed.

Pointers to all of the cell definitions are kept in a hash table. The hash function uses the I
cellnum field to identify each cell. In this way, any cell definition can be retrieved given a cell's

cellnum. 3

I 9

/* C E L L - the definition of a hierarchical cell */
typedef struct _cell {

int celnum; /* identifying number */
char *ceUname; 1* name string */
boolean done; /* if cell has been processed */
long bound[41; 1* bounds of the cell */
struct _rect *rectlist; /, list of rects for the cell /
struct _label *labellist; /* list of labels for the cell */
struct _rect *ovlprectlist; /, list of rects overlapping this cell */
struct -term *extteImlist; /* list of extemal terminals*
struct _term *intternlist; /'* list of internal terminals */

struct _inst *instlist; /* list of instances in this cell */
struct _net *netlist; 1* list of nets in this cell */
struct _tran *tranlist; /, list of transistors in this cell */
struct _cell *nextptr,

I cell, *cellpt

/* I N S T A N C E - the hierarchical instantiation of a cell*/
typedef struct _inst I

struct _cell *defn; /* pointer to the cell definition */
int tfmatrix[3][3]; /* transform matrix: no non-90 ° rotations */
long bound[4]; /* bounds of the instance */
struct _term *termlist; /* list of terminals for this instance k/

struct _inst *nextptr,inst, *i5tp.

Figure 2.1 - Cell and instance data structures

An instance struct is created for each instantiation of a cell. The purpose of the instance

struct is to prevent the repetition of information contained in the cell definition, thus a pointer

back to the cell definition is needed (this is the defn field). The transformation matrix of the

instance - a specification of how the instance is placed within its parent - is in the tfiatrix

field of the instance. Transformation matrices are presented in Section 2.3. The cell's bounds

are transformed by the transform matrix into the bound array of the instance; thus the bounding

box of the instance is always available. In Figure 2.2, a given hierarchy and its cell and instance

structures are shown as an example.

10

Cell Hash Table Cell

SRectlis ntls

e"''l

Hierarchy Graph Hierarchical Data structure

Figure 2.2 - Hierarchical data structure example

2.2. CIF Input FormatI

For many extractors including iCHARM, the input layout is described in CIF (Cahtech Inter-

mediate Form - Version 2.0), an ASCII file format where each layout geometry is described in
terms of its shape (in iCHARM this is restricted to rectangles), mask layer, and coordinates. A II

I
detailed description of the CIF format is given in Mead [9]. In the following section, the basic
features of the CIF format will be presented in order to discuss how the hierarchical data struc-

tures are built during the input phase of iCHARM.

A CIF file describing a layout is composed of a sequence of commands, the last of which is

an end marker. Each command is terminated with a semicolon. The CIF commands recognized

I
I

II

Table 2.1 - CIF Commands Recognized by iCHARM'
Command Syntax
Box with length, width, center B length width point point;
Layer specification L layername;
Start symbol definition with index, scale a/b DS index a b;
Finish symbol definition DF;
Call symbol C index transformation;
User extension digit userjtext;
Comments (comment text);
End marker E

by iCHARM - a subset of all of the commands described in Mead [9] - are shown in Table 2.1.

The rectangle primitives are defined by the Box command. The Layer command defines

the current mask layer; all primitives that follow the Layer command are to be placed on the

current majk layer.

CIF allows cells (or symbols in CIF terminology) to be defined to create hierarchy in a design
and reduce the length of the file. The DS command begins the definition of a cell, and the DF

command concludes that definition. All primitives between these two commands belong to the
cell. The cell number (or index) that identifies the cell is the first parameter of the DS command.

I The C command is used to make an instance (or call, in CIF terminology) of the given cell

(identified by the symbol number) and to apply the given transformation to the primitives within
the cell definition. There are four types of transformations that may be applied to coordinates

within the cell when it is instantiated; these are shown in Table 2.2.

The primitives in the instantiated cell are transformed in the order of the transformations

given in the cell call command. For example, "C 23 T 500 0 MX;" adds 500 to the x-coordinates

I Table 2.2 - Primitive Transformations
T point Translate the called cell's origin to this pointI M X Mirror in X; i.e., multiply the x-coordinate by -1
M Y Mirror in Y; i.e., multiply the y-coordinate by -1

i R point Rotate the cell's x-axis to this direction vector

I - After Mead [91, page 116.

I!

I

12

of the primitives in cell 23, then multiplies the x-coordinates by -1; however, "C 23 MX T 500

0;" does the multiplication by -1 before the translation of 500.

When a cell is instantiated, each transformation is not performed separately but can be

accomplished in one operation through the use of a single transformation matrix. A 3 x 3 3
transformation matrix T is used to transform a point (x, y) in the cell definition to its instantiated

coordinates (x', y') in the final design by the matrix operation 3
[x'y' 1] = [x y 1]T

The transform matrix T should be the product of primitive transformations given in the cell

call in the same order given in the call. For example, if T = T1 T2 T3, then T, is the primitive

transformation matrix for the first transformation in the cell call, T2 is the matrix for the second 3
transformation, and T3 is the matrix for the third. Each primitive transformation is found by the

following template:

1 0 0 1 0 0
Tab Ti= 0 1 0 MY Ti = 0 -1 0

a b 1 0 0 1

-1 0 0 a/c b/c 0
M X T i = 0 1 0 R a b T i = -b/c a/c 0

0 0 1 0 0 1

where c = N2 + b2. I

2.3. Transformation of Nested Cells and Flattening the Hierarchy

A cell definition may contain calls to other cells, and these cells may in turn contain calls to

other cels, etc. In order to transform coordinates in a nested subcell, it is necessary to combine I
the effects of the transformation matrices of the instances throughout the hierarchy. For exam-

ple, suppose a chip has an instance of cell A, and cell A has an instance of cell B (Figure 2.3 I
illustrates the situation). The instance of A and the instance of B have transformation matrices

TA and TB, respectively. In order to transform the coordinates of a rectangle in cell A to the 3
coordinate system of the chip, the transform matrix TA may be used, similarly, to transform

coordinates in cell B to cell A requires TB. To transform coordinates in cell B two levels to the 3
coordinate system of the chip requires: I

I

13

chip Top View
Side View

chip (x",y",) 4

instance of A chip

instance of B

I __

BI
Figure 2.3 - Transformations in a two-level hierarchyI

[x'y' 1] =xy 1] TB TA

I One can see that the transformation of two levels from the coordinate system of cell B to the

coordinate system of the chip may be combined into a single trarsformation matrix of

T = TB TA. Combining the effects of several levels of transformation matrices is useful in

flattening the circuit hierarchy.

Flattening one level of hierarchy involves instantiating all rectangles of a cell instance into

its parent cell. To instantiate a rectangle from an instance into its parent, first a copy is made of

the rectangle. The instance's transform matrix is then used to transform the rectangle from the

instance's coordinate system to the parent's coordinate system. To flatten through all levels of

hierarchy, one starts at the leaf-level cells and instantiates their rectangles into their parent cells.

This continues up through all levels of the hierarchy until the rectangle is instantiated into the

top-level cell.

The flat extraction mode in iCHARM first flattens the hierarchy of the circuit so that all rec-

tangles in the instances below the top-level cell are instantiated into the top-level cell. Extrac-

i tion is then done on the rectangles present in the top-level cell, which now holds all of the

I
14

rectangles for the circuit. If there is a large degree of repetition in the top-level cell, a large

amount of memory would be required to store the design. In any case the flattening procedure is

simple to execute.

The procedure to flatten a given hierarchy, as outlined in Procedure 2.1, is a recursive walk

down the hierarchy starting at the top-level cell. At each level, the current transformation matrix

is used to transform the coordinates from the current level to the top-level coordinate system. To

descend to the next level (for the next recursive call), the current transform matrix is multiplied

I

Procedure 2.1 - Flattening a hierarchy

Flatten(
Input: Top-level hierarchical cell Cellhead.
Output: All rects of lower-level cells instantiated into Cellhead.

Flatten(Cellhead)
beginI

for all instances, instp, of Cellhead
InstantiateCell(instp-4defn, instp--+tfmatrix);

end-,

InstantiateCell()
Input: currentcell: current cell being instantiated

tmatrix: current transformation matrix
Output: The rects of lower-level cell instances have been instantiated into Cellhead.

InstantiateCell(currentcell, tmatrix)

begin
copy all of currentcell's rects into Cellhead l
for all rects, currrect, of currentcell begin

transform coords of currrect using transform matrix tmatrix;
put currrect into Cellhead's rectlist;

end;I

for all instances, instp, of currentcell begin
{ premultiply current transform matrix by instp's transform matrix I

newmatrix -- MatrixMultiply(instp-tfmatrix, imatrix): I
InstantiateCell(instp-4defn, newtmatrix);

end;
end;

I
I
I

15

with the transform matrix of the instance that will be used for the next level of recursion. In this

manner, the effects of all the previous transform matrices (from the top-level down to the current

level) are combined into the current transform matrix, so that it may be used to transform the

current coordinate system into the top-level coordinate system.

2.4. CIF Input Module

I Reading in a CIF layout is straightforward since, by the rules of the language, a cell must be

defined before it is called. Cells are defined in bottom-up order in a hierarchical CIF file. There-

fore, cell structs are created in the order they are defined in a CF file: for each DS command, a
new cell struct is allocated. The rectangles labels that follow the DS command are attached to

I the cell until a DF command is read.

Any cell instances that occur within the cell ("C" commands) create instance structs that are

attached to the cell. The defn pointer of the instance struct is set by retrieving the cell definition

of the instance, since the cell must be previously defined. Any CIF primitive transformations

('0', "M", or "R") in the cell call are converted into one transformation matrix which is attached

to the instance struct.

2.5. Shortcomings of CIF

The purpose of the CIF format is to provide a standard interchange format between various

programs to describe mask layout data as shown in Table 2.3. CIF may be produced as the output

of a symbolic layout tool or an interactive layout editor which originally created the layout. The

layout described in CIF may then be processed by a variety of programs: display or plotting pro-

grams to view or produce a hard-copy of the layout, pattern generators to produce the final

Table 2.3 - Programs That Produce or Consume CIF
Input layout programs - CIF -- Programs to process layout
layout editor layout plotter
symbolic layout tool layout display

pattern-generators (for
final mask creation)
layout verification and
analysis programs

16

masks, and programs to verify or analyze the layout such as extractors and reliability analysis or

yield prediction programs. 3
iCHARM needs to support CIF because it provides this standard interchange format and also

because many extractor programs use CIF. Existing layouts described in CIF can be used to corn-

pare results against other extractors.

One shortcoming of CIF, however, is that it is not meant to be a design language. The

design of a layout is not meant to be carried out by manipulating a CIF file directly. CIF is not an

efficient way to internally represent layout for a program, i.e., CIF is not a good database or

secondary storage format for a layout. CIF is meant to be produced by layout programs for sub-

sequent use by other layout programs since the internal representations of the layout in the corn-

municating programs are dissimilar. The main shortcoming of CIF as an input format - its loose

coupling with the design of the layout - necessitates the use of the Oct/Vein system. This is

described in the next section.

2.6. The Oct/Vem System

Oct/Vem is a VLSI data management and design system developed at UC Berkeley [12].

Oct is a data management system capable of storing the design data for an entire VLSI chip, U
including the schematics, artwork, or the extracted netlist of a design. The design information in

the Oct format is stored in binary files, and Oct provides a simple interface for different applica-

tion programs to access the design data.

Vein is a graphical editor used to manipulate the graphical representations of design data in

the Oct format; since Oct can store circuit schematic or mask artwork information, these

representations may be created and edited with Vem. Vein features a menu-based, multi- I
window user interface that is built using the X-window system.

Figure 2.4a shows a typical design verification system that uses CIF as an interchange for-I

mat between the layout editor and extractor. Spice format files are used to communicate the

extracted circuit to a simulator. This verification system uses different file formats to transfer I
data between each analysis program. This means that considerable effort is spent "re-inventing

the wheel" while each program writes code that parses its input format and then writes out I
another output format. In addition, as the size of a design gets very large, keeping track of an

design revisions becomes a difficult task. The situation is further complicated by the fact that

multiple files for each revision must be maintained.

I

17

Architectural Design

HDL ral Behavioral
Editor PescnPtiol Simulator

Logic Design

Schematic Schematicttogic Logic Logic
[Editor DtbsGae%3ateSimulator

Artwork Design
Layout CI Circuit --- Spc Circuit

SEditor FomtExtraction FomtSimulation

Figure 2.4a - A design system using many interchange formats

I
Figure 2.4b shows a unified, integrated environment for design with an Oct database as its

central element. Since an Oct database can provide a repository for all design data - artwork as

well as an extracted netlist for simulation - both artwork and simulation tools can access the

design database through the same interface. The same access routines are used by each applica-

tion program to access Oct design data. All data conversions between programs that require dif-

Iferent file formats would be eliminated. In addition, since designers are spared the juggling of

files in many different formats, data management problems are kept at a minimum.

For these reasons, iCHARM accepts input layouts in the Oct format as well as in the CIF for-

mat. In the next section, the Oct format is introduced with the goal of showing how an applica-

I tion program - in this case the extractor iCHARM - uses the Oct access routines to read layout

information in the Oct format.

I
I

I
18 I

I
Logic Design
Artwork Design

Vem Simulation

Layout /I
Schematic

Editing
CircuitI

Extraction I
Figure 2.4b - An integrated design system using Oct/Vem

2.7. The Oct Database and Terminology U
Design data in the Oct format are organized and specified by the concepts of a cell, view,

and facet. The basic unit of storage in Oct is a cell, which, for example, may contain a single

transistor, a logic gate, or an entire functional unit (e.g., ALU, CPU, or RAM). To efficiently 3
represent a design, Oct cells are hierarchical so that one cell may contain instances of other cells.

Each cell in Oct may have one or more views depending on the point at which the cell is in

the design process. For example, at the architectural or logic design level, the cell is best

described by its schematic view, which abstractly defines the way instances of the cell are inter-

connected. On the other hand, a symbolic view would show the relative placement of objects

within the cell. At the artwork design level, a physical view describes the mask layout for leaf-

level cells. There also could be a simulator view of a cell that has objects of interest for simula-

tion, namely, net and component lists. This view of the cell would obviously be created by an

extractor.

Finally, for each cell and view there can be multiple representations or facets. The default

facet is the contents facet. In a schematic view, for example, the nets and instances of a cell are I
I

I
S19

included in the contents facet. For the physical or layout level view, the contents facet would

contain all of the mask geometries of the cell. Different facets for a view may be created to limit

the amount of detail used to represent the design. Another facet may be created to show a

3 simplified aspect of the same view: for a schematic view aal interface facet may show only the

bounding box of the cell along with the interconnection terminals at the edge of the cell. In Fig-

3 ure 2.5, a contents and interface facet for a schematic view is shown. This simplified abstraction

of the view may be used to speed up the processing of a design hierarchy when a detailed

3 representation of each cell is not needed.

The facet is the object that is edited in the Oct/Vem system. For instance, in Vein, the

<cell>:<view>:<facet> must be specified to edit an object. The actual design data for a facet are

stored in a binary-encoded file named with the name of the facet. Since each cell can have mul-

3 tiple views and each view can have multiple facets, the <cell>:<view>:<facet> is stored in the

file named <facet> under the directory named <view> which in turn is under the <cell> direc-

tory. Figure 2.6 shows the cell "alu186" with the views "schematic," "physical," and "simula-

tor." Each view may have both a cont2nts and an interface facet.

Each facet contains a collection of prim itives or octObjects that constitute the design. A

facet itself is an octObject. The octObject primitives can represent structural information

I
I

Contents Facet Interface Facet

I
I 2

I

I
I

I
20

I
<cell>:<view>:<facet> in filesystem Example

<cell> alu186

<view> <view> <view> schematic physical simulator
%, % ~ I 1"-I I '." %%.% I . / " 'S ,

, • I S I S • sI *.

<facet> <facet> <facet> contents; interface;

view: physical Stored as:
faet: contenal alu 1 86/physical/contents;facet: contents

Figure 2.6 -How facets are stored in the file system 3
I

(instance, term, net), geometric information (box, polygon, circle, path, label, point, edge, layer),

and miscellaneous information (property, bag). 2

Relationships between octObjects are specified by their attachments with other octObjects. 3
For example, a Box object may be attached to a Layer object, or a property attached to a Net or

transistor Instance. Attachment of object B to object A forms a graph with a directed edge from

A to B as shown in Figure 2.7. In Oct terminology, one can also say that A contains B (or the

contents of A is B) or that the container of B is A. The contents of an octObject are all of the

octObjects that are attached to it. The container of an octObject is the octObject that the given

object is attached to.

Facets contain octObjects by the use of attachments. Figure 2.8 shows a given hierarchical

Oct facet that has two instances. An example of the attachments that are created for such a

design are also shown. The facet is shown to contain an Instance bag that in turn contains the

2 Terminals are the external connection points of a cell or instance. A bag is a user-defined collection of oc- I
tObjects. Properties consist of a name string and a value: they may be used to represent the dimensions for a

transistor or parasitic capacitance values for nets.

I.

21

IA

Figure 2.7 - Attachments: octObject B is attached to octObject A

Attachments

Given Hierarchy

I Terminals "NT CE"Terminals

(rmal) Formal)

Instancn Nt Instance

Terminals
Terminals

(Actual) (Actual)

Figure 2.8 - Simple attachments on a facet

two instances. The single internal net is attached to the facet. The external or formal terminals3 are attached to the facet, but the so-called actual terminals of the instances are attached to the

instances not the facet.I
I

22

In Oct, one is free to make attachments in an arbitrary fashion. An Oct policy on a view

provides the meaning or reason for the attachments in the facets of a view. In some sense it

determines if an attachment makes sense, e.g., if a given attachment is "legal." For example, the

policy on a facet with terminals attached to a net interprets the attachment to mean that the ter-

minals are connected to the net. The connectivity of the design that the facet is trying to

represent can be detennined only by the policy for that facet. A policy can also be used to dic-

tate where to look in the facet for specific information: the dimensions of transistor instances or

the capacitance of a net, for example.

2.8. Oct Integration

An Oct front-end was developed for iCHARM so that it could read layout information from

Oct facets. The input module uses Oct access routines to read the facet and its attached objects

to subsequently build internal data structures.

2.8.1. Oct access routines

A program may interface with the Oct database by calling Oct access routines that read the

Oct files and communicate the information within them. The Oct access routines are defined in

object code libraries that must be linked with the interface program when it is compiled. The

basic access routines will be described next so that a sketch of the Oct input module of iCHARM

can be presented.

The declarations of the minimal set of access routines are shown in Figure 2.9. The octO-

penFacet(routine must be called before any operations can be done on the "facet" argument.

This routine is similar to fopen(except facets are manipulated instead of file pointers.

The octOpenMaster0 routine is similar to octOpenFacet0 except the "master" facet of the

given "instance" is opened for processing. The routine is useful, given the "instance" facet, to

get a pointer to the "master" facet that holds the original cell definition.

The octInitGenContents0 and octGenerate() routines work together as shown in Figure

2.10 to gene,'te all of the objects of a certain type that are attached to the "container" object.

The octlnitGenContentso routine is used to obtain a "generator" that is used to get all of the

octObjects that are attached to the "container" that are of the type specified by "mask." The

octGenerate0 routine is then used in a while-loop to sequentially produce the attached objects m

23

I
octOpenFacet(facet)IoctObject *facet;

octOpenMaster(instance, facet)
octObject *instance;
octObject *facet;

octlnitGenContents(container, mask, generator)
octObject *container,
octObjectMask mask,
octGenerator generator,

octGenerate(generator, object)
octGenerator generator,
octObject object; Figure 2.9 - Selected Oct access routines

octGenerator gen;
octObject net;,
octObject term;

octlnitGenContents(&net, OCT TERM MASK, &gen);
while (octGenerate(&gen, &term))

/* process the terminal term */

I Figure 2.10 - Use of an Oct generator to get all attached terminals of "net"

I
the "object" variable using the "generator." Similar routines exist to obtain all of the containers

of an object.

I 2.8.2. Oct input module

The Oct input module is sketched in Procedure 2.2. The procedure is not as simple as the

one that reads the CIF format. In CIF, the cells are defined in the file in the proper bottom-up

hierarchical order so that reading them in is straightforward.

24

Procedure 2.2 - Oct input procedure

GetOctLayoutO
Input: inputarg: facet name input argument.
Output: The internal data structures are built from Oct facet.

GetOctLayout(inputarg)
begin

octBegin(;
inputfacet -- return a facet name from inputarg string;
octOpenFacet(inputfacet); I start at the top-level cell inputfacet I
DefineCell(inputfacet, Cellhead);
octEndo;

end;

DefineCellO
Input: newcell: new cell struct to build (returned).

inputfacer input facet.
Output: A cell struct newcell is built from the information in inputfacet.

}
DefineCell(inputfacet, newcell)
begin

newcell -- MakeNewCellstructo;
GetRectsFromFacet(inputfacet, newcell);
octInitGenContents(inputfacet, OCTINSTANCEMASK, instgen);
while octGenerate(instgen, instance) returns OCTOK do make instance structs for newcell }

GetInstance(instance, newcell);
end;

GetRectsFromFacetO(
Input: facet: input facet to read boxes from

cell: cell struct being defined (to add rects to).
Output: Oct boxes from facet are converted into rects and added to rectlist of cell

GetRectsFromFacet(facet, cell)

begin
octlnitGenContents(facet, OCTLAYERMASK, lavergen)
while octGenerate(layergen, layer) returns rOOK do begin I for each layer, get all rects I

octlnitGenContents(facet, OCTBOXMASK. box gen);
while octGenerate(bo.xgen, box) return OCr_OK do

add a rect to cell's rectlist from the info of box, layer. U
end;

I

25

Procedure 2.2 - Oct input procedure (continued)

GetlnstanceO
Input: instance: Oct instance

parentcell: cell struct to create instance for
Output: an instance stuct for instance has been built and inserted into parentcell.

Getnstance(instance, parentcell)
begin
I get the facet that is the master (definition) of instance I

fac'?t +- octOpenMaster(instance);
I instdefn is set to the cell struct that defines the instance}

instdefn +- return the cell struct definition of facet,
if instdefn is not already defined
begin

DefineCell(facet, instdefn);
end;

build a new instance struct
newinst +- MakeNewlnststructo;
newinst--+defn +- instdefn;

- copy instance's transformation matrix to newinst-,
insert newinst into parentcell's instance list;

* end;

I
To read an Oct design, the hierarchy must be traversed manually. The Oct input module is3 a recursive traversal of the design hierarchy that starts at the top-level facet. It then visits each

instance in order. If all of the instances of the current facet are defined, then the current facet is3 processed: the Oct boxes that are attached to the facet are read in, and instance structs are

created for all of the instances. If the definition of the instance is not defined then the module3 calls itself again on the instance's definition facet.

I

I

U
26

CHAPTER 3

2

I
CIRCUIT EXTRACTION ALGORITHMS 3

I
This chapter describes the process of circuit extraction in more detail. A stated research 3

goal of this work is to do the extraction hierarchically; hierarchical extraction is done on cells

with mask-level geometries as well as subcell instances. As a first step, however, it is important 5
to look at how flat extraction is done, that is, extraction done on cells consisting only of

geometries and without any instances. Flat extraction can be thought of as the basis of hierarchi-

cal extraction since all hierarchical extractors must call a flat extractor, for example, on the leaf-

level cells of a design. Hierarchical extraction is simply an extension of the basic flat procedure

which then allows the extractor to handle cells with instances. Therefore, methods to carry out
flat extraction will be examined first.

3.1. The Flat Circuit Extraction Process

As stated before, circuit extraction is the transformation of artwork rnformation into circuit 3
information so that one may verify that a circuit performs as intended. A flowchart of the (flat)

circuit extraction process is shown in Figure 3.1. 3
The input to the flat extractor consists of the rectangles of the layout for each mask layer.

The geometric extraction step consists of, first, the identification of transistors by finding the 3
regions where the POLY and DIFF mask layers overlap. Second, all of the interconnection nets

are identified by starting at each transistor's drain or source region and collecting all of the 3
electrically-connected rectangles. The algorithm used and the underlying data stnctures are
very critical to the efficiency of the geometric extraction step. The two tasks listed above are the 3
specifics of the following general layout analysis problems:

(1) Find the intersection of geometries on two layers 3
(2) Find all of the connected geometries on a given layer that contain a given coordinate

Geometric extraction algorithms are compared in the next section.

I
I

27

Layout
Information
(CIF Format Circuit

or
Informatio

Oct Format) Geometric Parameter

Extraction Extraction

Figure 3.1 - The circuit extraction process

The extraction of electrical parameters is the second major step in the extraction process.

In this step, the dimensions of the transistors are calculated, and the resistance and capacitance

of the interconnection nets are calculated. The final output of the extractor consists of the

transistors extracted and the parasitic resistance and capacitance of the interconnects.

The extraction of the parasitic values, as shown in Figure 3.2, is actually a modeling step.

Each rectangle of a net is considered to form a parallel-plate capacitance with the chip substrate

which is the ground plane for the chip. A simple model is used to calculate this substrate capac-

itance; the capacitance is calculated by finding the total area and perimeter of the rectangles that

make up the net, multiplied by a technology-dependent constant.

Generalized resistance extraction of arbitrary combinations of rectangles is not as easy a

problem as capacitance estimation. For the resistance of each interconnection net, the rectangles

that make up the net are split into simpler, nonoverlapping pieces that cover the same area as the

original rectangles. The total resistance across the length of the rectangles that make up the net

is the sum of the resistances through each of the simplified pieces. Parasitic extraction is

covered in detail in Section 4.2.

I
I
I

m
28 m

m
II

TII ! I
II

Figure 3.2 - Parasitic extraction of interconnection nets

I
3.2. Geometric Extraction Algorithms

An input layout for a typical circuit is made up of a large number of rectangles. The m
geometric extraction step, which is the basis of the entire extraction process, consists of a

number of operations on each of the input rectangles.

The data structure chosen to store and retrieve the layout rectangles is crucial to the

efficiency of the algorithm used to carry out the geometric extraction step. In addition to the

time complexity of the algorithm, the total memory usage of the process must be considered.

Even in systems with a large virtual memory, the thrashing caused by a small physical memory

when the memory image is large can significantly degrade the performance of an algorithm. In

this section, several layout data structures that have been employed in previous extractors are

discussed along with the one that is used in iCHARM.

3.2.1. K-D trees

The first technique uses multi-dimensional binary trees or so-called K-dimensional (K-D)

trees to store the input rectangles [13], [15]. This structure has been shown to be particularly I
I

29

efficient for a layout editor although it was originally developed for the general problem of asso-

ciative retrieval of data records with a multiple number, K, of keys or attributes. For the purpose

of storing rectangles, K = 4, with the four keys, ki = {Xmn,Ymin,XmaxYmax} for i = (0,1,2,3),

representing the bounds of each rectangle.

Each node in a 4-D tree corresponds to a rectangle in the layout. At level I in the tree, the

value i is defined as the discriminator of a node at level I. At any node in the tree, the coordinate

ki of the rectangle is used to bisect the layout plane, and any subsequent rectangles that are

inserted into the tree are placed in the node's right or left subtree depending on where the new

rectangle lies in relation to the bisection line. In other words, for a node t, the key values ki of

each node in the left subtree of t are less than the ki of t, and the key values ki of each node in

the right subtree of t are greater that the ki of t.

Figure 3.3 shows a 4-D tree created from the given layout as an example. In each node, the

circled key value is used to split the input plane for the right and left subtrees. For rectangle A,

the Xmjn (left edge) value , s used to split the layout plane: all rectangles to the left of x = 3,

namely, B, D, E, and A -fe put in the left subtree of A, and rectangles C, F, G, and I have an

X,,. larger than 3 so they are put into the right subtree of A. For rectangles with a discriminator

of I (B and C, the bottom edge is used to split the input plane; for discriminator 2 rectangles (D,

E, F, G), the right edge is used, etc.

The first step in geometric extraction is the identification of all transistors, that is, where

POLY and DIFF rectangles intersect. This is done by finding, for each POLY rectangle, the DIFF

rectangles that intersect it. Let N be the total number of input rectangles. The number of POLY

rectangles is O(N) and Rosenberg [13] reports that intersection search, in which all rectangles

that intersect a given region are found, takes 0(log N) for K-D trees. Therefore, transistors may

be identified in O(N log N).

To identify all of the connected rectangles in the geometric extraction step (net

identification), Marple [8] reports that K-D trees should take 0(n log N) time, where n is the

number of rectangles in the net. Since n is O(N), the entire geometric extraction step with K-D

trees should take O(N log N) tune. Of course, all N records need to be kept in memory for the

extraction process, so the space complexity is O(N).

The K-D trees have a number of disadvantages, the primary one being that certain insertion

orders will create an unbalanced tree that degenerates into a simple linked list. The running time

30

Discriminator:
8 2,4,4 0

7

6
5 135,5 6 6)7,7] 1-

4

1 2,031 0,536 4,0 3 4,576 2

012345678 I

0,6,10 5,1,7 3

Layout 4-D Tree

Figure 3.3 - A layout and its corresponding 4-D tree

for the structure will degrade in this case so additional processing must be done when rectangles

are added or deleted from the tree to keep the tree balanced.

3.2.2. Scanline algorithms

Rather than consider all of the rectangles at once, in a scanline extraction algorithm, the

rectangles are considered only when they cross a vertical scanline that sweeps across the input

plane from left to right [1], [4], [16]. The scanline stops at points in the plane where the rectan-

gles begin and end.

At each stopping point, all rectangles that are beginning (i.e., the scanline is at leftmost

edge of the rectangle) are inserted into the "scanline" data structure; all rectangles that are end-

ing are deleted from the scanline structure. The scanline structure can be thought to contain the

"active" rectangles for the extraction process. When a rectangle is added to the scanline struc-
ture, it is determined if it intersects with any other rectangle currently in the structure.

Ilw

31

I /New Rects (to be added to scanline): B

Old Rects (to be deleted from scanline): C

Existing Rects in scanline: A, C, E

Nets created: Two ((C, D, E), (A))

M E Rect B will be added to the net (C, D, E)Iand a transistor will be created

Scanline

Figure 3.4 - The scanline extraction processI

IIntersections of POLY and DIFF rectangles create transistors. On the other hand, if two intersect-

ing rectangles are on layers that electrically connect, then the new rectangle is added to the list

Iof rectangles that make up a net, of which the rectangle already in the scanline structure is a

member.

IFigure 3.4 shows an example of extraction in progress that uses a scanline. Rect A is a DIFF

rect, and all other rects are POLY. At present the scanline is positioned to add rect B to the scan-

Iline structure since its left edge is on the scanline. When it does so, rect B will be added to the

net that already contains rects C, D, and E. The intersection of rects A and B will create a

transistor, and finally at the end of this scanline position, rect C will be deleted from the scanline

structure and no longer be considered active.

IActually, the scanline technique uses simple linked lists as the data structure to store the

rectangles, although the lists are kept sorted. In this case, the scanline technique is more impor-

I tant than the data structure used to store the rectangles. Scanlines are useful for batch applica-

tions like extraction, but since the underlying data structure is a linked list, using scanlinesI
I

I
32

would not be advisable for the interactive queries or random deletions of rectangles that would

be frequent in layout editing. 3
However, Szymanski [16] reports the time complexity of geometric extraction with scan-

lines should also be O(N log N) with an expected space complexity of only O(4NK). The space 3
complexity is dictated by the maximum number of rectangles cut by a vertical line in the layout

plane, which has an expected value for most designs of O(iN). 3
3.2.3. Corner stitching

Comer-stitching has emerged as a successful data structure for storing layout rectangles to

implement such tools as a layout editor, design rule checker, compactor, and extractor [14], [8].

In comer-stitching, both the layout rectangles and the empty space between them are stored with

nonoverlapping tiles. Input rectangles that overlap are handled by creating special overlap tiles

or by combining them with existing tiles to create larger nonoverlapping tiles. Two stitches per

tile are used to connect adjacent tiles (see Figure 3.5 for an example of a comer-stitched layout). I
Because of this, the most efficient operation for comer-stitching is nearest neighbor searching.

Marple [8] reports that comer-stitching is slower than K-D trees for insertion and deletion

operations. Therefore, K-D trees are favored for fast interactive layout editing with a large

number of rectangles, and comer-stitching is advocated for batch processing such as that

involved in extraction.

Net identification using the "node search" algorithm in Marple [8] is reported to take O(n),

where n is the number of rectangles in the net. Transistor identification uses the "area search"

algorithm to find the intersection of POLY and DIFF that creates each transistor; then the node

search procedure can be used to combine transistors made up of several tiles. Area search is

reported to be O(n) also. Therefore, the time complexity of the geometric extraction step with

comer-stitching is linear.

The primary disadvantage of comer-stitching has been reported to be the difficulties it has

in handling a large number of different layers [81 and multiple overlapping regions [13].

3.2.4. The geometric extraction algorithm in iCHARM 3
The choice for the geometric extraction algorithm used in iCHARM was perhaps determined

more by practical concerns than by theoretical advantages. Two existing extractors that were 3
developed at the University of Illinois were evaluated with the intent to use the geometric I

I

33

- k

Figure 3.5 - A corner-stitched layout

extraction code in one of the existing implementations to develop a new hierarchical extractor,

one that is integrated with the Oct/Vem system. It was felt that nothing would be gained from

starting from scratch. The first extractor, iCPEX, uses 4-D trees to store the input rectangles [15],

and the second extractor, PACE, uses a scanline extraction algorithm [1].

The extractor in the Magic layout editor was not evaluated, primarily because hierarchical

extraction is already implemented in the program. As will be shown in Chapter 5, the Magic

extractor handles a difficult hierarchical test-case by flattening the hierarchy. A new technique
was developed for iCHARM that extracts the test-case without flattening. In addition, it was felt

that the large size of the Magic program would make it difficult to learn and to add new features

to it. The iCPEX and PACE programs were of a more manageable size.

After extensive study, the PACE program was found to be a better implementation. The

next clapter presents the details of the iCHARM implementation which uses code from the PACE

program to do the basic flat extraction.

I

CHAPTER
4

3

U
iCHARM FLAT EXTRACTION 3

3
This chapter documents the implementation of iCHARM to do geometric extraction, power 3

bus extraction, and parasitic extraction. Since only basic techniques are covered, hierarchy is

not yet utilized in this analysis. As mentioned before, a scanline algorithm is used to find the 3
geometric relationships between the mask-level rectangles.

4.1. Geometric Flat Extraction 3
Geometric extraction, in which the basic connectivity of a cell is formed, is the first step in

the extraction process. The geometric extraction subroutine takes a cell as its input argument; I
the rectangles in the rectlist of the cell are used as input to create the nets and transistors that are

output in the netlist and tranlist fields of the cell struct. B

The extraction is considered flat because only rectangles are used in the geometric extrac-

tion process. If the input cell originally contained instances (in other words, hierarchy), then the

cell must be flattened using the Flatten() procedure shown in Procedure 2.1 before flat geometric

extraction is performed. The major steps in the flat extraction process are the following: 3
FlatExtractO
Input: cell: The cell to extract. Input rectangles are in cell's rectlist.
Output: The extracted net and transistors in cell's netlist and tranlist.

FlatExtract(cell)
begin

if cell has hierarchy then
Flatten(cell);

GeometricExtract(cell);
ParasiticExtract(cell);
report transistors and parasitics for cell;

end-

l
I
I

1 35
4.1.1. Geometric data structures

3 The C-language declarations for the rect, linkel (link element), net, and tran (transistor)

structures are introduced in Figure 4.1 to permit an in-depth presentation of the geometric3 extraction procedure. Each struct has a nextptr field that is used to make a linked-list of each

type.

3 Each electrical net is defined by a net struct. The net is identified by its netnum, which is

generated internally by iCHARM, or the user may name the net by defining a label at the location

U /* NET DEFINITION *
typedef struct et

long netnum; P* number of the net ~
char *lab; P* label for the net ~

cha urtron a scratch pointer field *

intcnt Pa scratch count field *
scratch;

int coun; Pcount of number of rects in 'rectlist' ~
_tut-em*eiit *ls of terminals for this net */

int coun; /*while the net is in the scanline struct,
count of terms in cell's input termlist ~

float cap; P* the capacitance of the net ~
struct -net *nextptr,

U /MASK RECTANGLE */
typedef struct _rectI

long coord[4]; 1* Xwm *1ffk.Y~
char layer, /* layer number *U st~~~~u _I ke tat; 1pt:tassos(ri/oce *

struct -net *setptr P* ptr to owner net (rect in netp-4rectlist) *

I char *pri..Jt; /* ptr to primary rect or term (in scanline) *
struct _rn*settran; P t otransistor (channel rect) *

un;I struct _branchnode *bnode; /* rect's branchnode (parameter extraction) ~
struct _rect *nextptr,

rect, *recptr,3 Figure 4.1 - Data structures for geometric extraction

I
36

of a rectangle of the net. The lab string is the user name for the net. After the geometric extrac-

tion process is over, the rectlist field contains a list of rectangles that make up the net. 3
The rectangle struct includes the (Xnin.YminXmaxYmax} bounds of the rectangle and the

layer it is on. The un union field is used for temporary pointers during the extraction process. 3
The linkel (link element) struct is used to hold a list of pointers to arbitrary items: the

pointer iptr is cast to the type of object that it points to. 3
The tran struct defines each transistor. The chanptr field points to a list of channel rectan-

gles which are the rectangles that make up the channel region of the transistor. The pdiff field is

3
/* L I N K E L - a general structure for a list of pointers */
typedef struct _linkel I I

char *lptr,

struct _linkel *nextpt,
} linkel, *linkelptr1

/* TRANSISTOR */
typedef struct _tran {

long trannum; /* the transistor number "/
struct _rect *chanptr, /* a list of channel rectangles */
char ttype; /* type of the transistor */
union I 3

struct _linkel
pdlink[2]; / the poly and diff links */

struct (
long area; /* area of the channel rectangles */
long length; /* length of intersecting diff rectangles */

al;
pdiff; I

long gnode, snode, dnode; /* gate, drain, and source node numbers */
long gnetnum, snetnum,/* gate, source, and drain net numbers */
union {dnetnum; 3

char *ptr; / a scratch pointer field */
int cnt; / a scratch count field */

I scratch;
struct _tran *nextptr;

}tran, *traptr,
Figure 4.1 - Data structures for geometric extraction (continued)

I
I
3

37

used for temporary storage during extraction. The dnetnum, gnetnum, and snetnum fields are the

net numbers of the drain, gate, and source terminals of the transistor. For example if a

transistor's gate is connected to a net with a netnum of "57," then the gnetnum of the transistor is

set to "57."

On the other hand, the dnode, gnode, and snode fields are the node numbers of the drain,

gate, and source. In geometric extraction, all of the connected rectangles are collected into one

net and all of the rectangles are considered to be equipotential. In parasitic resistance extraction,

each net is split up into equipotential regions with resistances between them; these equipotential

regions are defined as nodes.

4.1.2. Basic scanline extraction procedure

A general scanline procedure is presented in Procedure 4.1. The procedure processes the
rectangles in rectlist. Since the scanline proceeds from left to right, the rectlist must be sorted.

The curscan variable keeps the current scanline position. The rectangles are removed from the

rectlist in sorted order. The scanline "stops" at the Xin coordinate of the rect at the head of

rectlist and processes all rects that have the same Xin coordinate.

Rects are kept in the scanline structure while curscan >_ the rect's Xmin and curscan <_ the

rect's Xma1 . In iCHARM, the scanline structure is implemented as a simple linked list. More

sophisticated data structures could be used to support faster deletion or searching of rectangles in

the scanline structure.

Procedure 4.1 will now be discussed in detail. At each stopping point of the scanline,

curscan is set to the left edge of the rectangle at the head of rectlist. Next, the scanline structure

is searched to find the rects already in the scanline structure that have been passed by curscan

and must be deleted. This is accomplished in the DeleteFromScanline0 routine, which also may

do some algorithm-specific processing of the rectangle that is to be deleted from the scanline

structure.

In the next step, prect, the rect with its Xi n edge at curscan, is taken out of rectlist so that

it may be inserted into the scanline structure. The AddToScanline() routine is called to perform

any algorithm-specific processing of the new rectangle. The input rect prect is checked against

all rects in the scanline structure to see if it touches any of them. The touching rects and prect

are processed in various ways according the purpose of the scanline procedure being imple-
mented. Then prect is added to the scanline structure.

I
38 I

I
Procedure 4.1 - A generic scanline procedure

ScanlineAlgO
Input: rectlist: list of rectangles to process.
Output: The rects have been processed (from left to right) in some way.)I

ScanlineAlg(rectlist)
begin

sort rectlist in increasing order of Xmn; I
while there are rects in rectlist do begin

curscan --- Xmin of head of rectlist,
DeleteFromScanlineO;
for all rects, prect, with Xmin = curscan do begin

prect +- Pop(rectlist);
AddToScanline(prect);

end,
end;
curscan - .oo;
DeleteFromScanlineO; {delete (and process) all the remaining rects from scanline1

end;

AddToScanlineO(
Input: prect: the rectangle to process and add to scanline.
Output: The rects in the scanline that touch prect have been processed in some way,

and prect has been added to the scanline structure.

AddToScanline(prect)

begin
for all rects, srect, in scanline that touch prect do (find all rects in scanline that touch prect I

process interaction of srect and prect;
add prect to scanline;

DeleteFromScanline0)

Output: Rects past curscan have been processed in some way and deleted from the scanline structure.

DeleteFromScanline0)

begin
for all reci,, srect, with Y... < curscan do begin (flush all rects in scanline past curscan }

srect +- Pop(scanline):
process outgoing srect if necessary;

end;

I

39

Scanline A

I :1

-- B E

I __ __ __ __ _C

Position :1 2 :3 :4

3 Figure 4.2 - A collection of rectangles to process using a scanline

I

Figure 4.2 shows a collection of rectangles to be processed by a scanline algorithm. The

scanline will stop at points 1, 2, 3, and 4. At each point, the following will occur:

At point 1:

Rects A, B, C, and D will be added to the scanline structure. Let A be added first. Then

when B is added, the interaction between A and B will be considered and processed. Since

C does not touch A and B, rect C is simply added to the scanline structure. When D is

added, the C-D interaction is processed.

At point 2:

No new rects are added to the scanline structure. Rects B and C are deleted from the scan-

line.

-- At point 3:

Rect E is added to the scanline structure. A and D are still in the scanline, so the interac-3- tion of E-A and E-D is processed before E is added.

I

40

At point 4:

All remaining rects are deleted from the scanline.

The next sections will present the application of the basic scanline procedure to implement

geometric extraction in iCHARM.

4.1.3. Scanline net extraction

First, the problem of finding all the nets of a cell, which amounts to partitioning the input

list of rectangles for the cell into electrically-connected groups, is considered. Since each group

constitutes a net, the output of the net extraction procedure is a list of net structs, and each net

has a list of rectangles for the net.

The net extraction procedure given in Procedure 4.2 is an extension of the basic scanline

procedure. The basic procedure is modified by filling in the AddToScanline0 and DeleteFrom-

Scanline0 routines. In the AddToScanline0 routine, CreateNet0 is called to make a new net

struct for the rect prect. The output of CreateNeto is shown in Figure 4.3. In CreateNeto, a

copy of prect is inserted into the new net's rectlist and the pointer netrect is returned by the rou-

tine. The netrect's un.setptr is set to point back to the net struct.

netrect

ect nextptr

.setptr

rectlist
et nextptr

Figure 4.3 - The output of the CreateNet() routine

41

Procedure 4.2 - Net extraction procedure using a scanline algorithm

NetExtract()
Input: cell: contains a list of rectangles to process.
Output: The cell's netlist has been created.

NetExtract(cell)
beginI ScanlinAlg(cell's rectlist)
end,

I AddToScanline()
Input: prect: the rectangle to process and add to scanline.
Output: A net struct is created for prect, the nets of the redts in the scanline thatI touch prect are combined, and prect is added to the scanline structure.

AddToScanline(prect)
begin

netrect +- CreateNet(prect);
I find all redts already in scanline that touch prect)

for all rects, srect, in scanline that touch prect doI begin
combine nets that contain srect and prect-,

end;I add prec: to scanline;
end,

I DeleteFromScantine()
Output: All rects past curscan are deleted from the scanline structure;

complete nets are added to the cell's netlist.

DeleteFromScanline()
beginI I flush all rects in scanline past curscan

for all redts, srect, with X,,,, < curscan do
begin

srect +- Pop(scanline);I "complete" nets have no redts in the scanline, i.e., all of the rects that make up the net
are past curscan)

if the net of srect is "complete," then add the net to the cell's netlist;I end;
end,

I
42

After CreateNeto, the nets of the rects in the scanline structure that touch prect are com-

bined with prect's net since all connected rects should be in a single net. This step corresponds

to "processing the interaction of srect and prect" in the generic procedure of Procedure 4.1. Sub-

sequently, prect is added to the scanline structure: prect is added to the scanline list, and the

un.prirect field of prect is set to point to netrect.

DeleteFromScanline0 is also modified for net extraction. If a rect is to be deleted from the

scanline and it is the last rect in the scanline structure for its net, then the net is inserted into the

cell's netlist. This step corresponds to "processes the outgoing srect" in Procedure 4.1. I

The net extraction procedure is illustrated in Figure 4.4 using the same rectangles of Figure

4.2. The scanline contents are shown at each value of curscan in Figure 4.4.

After Position I After Position
scanline Rect e Rect ect Rect anlinRect nex tr -ecI

un.prirect un.prirect p un.pnrect g unprirect

ect ect ect ect ect ect Redt Rect3
un.sep un.setp unsetp un.setp

et et etNerecttist rectlist rcitrcts
I l'IAfter Position 3 After Position 4I

scanline ect ect Rect ect ect Rect

unprr tn.se

ect ect Rect ect ect Net

Figure 4.4 - The scanline contents for the net extraction of Figure 4.2

I
I
I

43

At position 1, rects A, B, C, and D are inserted into the scanline structure. Let the insertion

order be A, C, B, then D. Rect A will create one net, as will rect C (from CreateNet(). Rect B

will create another net, then combine nets with A (both A and B are put in the same rectlist)

since A and B touch. Similarly, rect D will create a new net, then combine with C. Two nets

finally remain. At position 2, rects B and C are deleted from the scanline structure. At position

3, rect E is added to the scanline and combines both nets since it joins rects A and D. Finally, at

position 4, all rects are deleted from the scanline so the net is added to the cell's netlist.

4.1.4. Scanline transistor extraction

The scanline procedure that extracts the nets may be modified to identify transistors. The

AddToScanline0 procedure of Procedure 4.2 should be modified as shown in Procedure 4.2a.

The CreateTransistor0 routine creates a new transistor structure. In this routine, the intersection

area of the POLY and DIFF rectangles is used to create a channel rectangle that is inserted in the

new transistor's chanptr field. Pointers to the rectangles that form the transistor's drain, source,

Procedure 4.2a - Transistor creation procedure using AddToScanline()

AddToScanlineO
Input: prect: the rectangle to process and add to scanline.
Output: A net struct is created for prect, the nets of the rects in the scanline that touch prect are

combined, and prect is added to the scanline structure. A transistor is created if prect
and any rects in the scanline form one.

AddToScanline(prect)
begin

netrect -- CreateNet(prect);
find all rects already in scanline that touch prect}
for all rects, srect, in scanline that touch prect do begin

if prect and srect form a transistor then
CreateTransistor(prect, srect);

else
combine nets that contain srect and prect;

end;

add prect to scanline;
end;

I
44

and gate terminals are recorded in the transistor's pdiff field. When the rectangles of the transis- I
tor are beyond the curscan position, the transistor is output to the cell's transistor list (tranlist).

The modified net extraction procedure that also creates transistors accomplishes the major-

ity of the geometric extraction step. In iCHARM, a subroutine named processtran0 is called after

the nets and transistors are identified to do some final processing of the data structures. The

processtran0 routine sets the drain, gate, and source net and node numbers for each transistor. It

calculates the channel area and length of each transistor and stores it in the pdiff-al field. The

routine also rearranges the pointers to the drain, source, and gate rectangles so that the pointers

point hback to the transistor from the rectangles.

Figure 4.5 shows the data structures that are created for a simple layout after geometric

extraction is complete. The drain, source, and gate rects use their un.tranpt field (through linkel

I
neist Ce tanlist

Diff L

Kec ,ra
(150,150, .- chanptr [gsdlnode 2,3,4 10Poly

~I
3 5 , 5) [u n s e tt a n 0gd n t u

CHN1,3,2 O
pdiff.al.area 0 150 350 500

Like pdiff.al.length iklLne

uec t _t Ra t n .t r a n p t .t r a n

(350,150, (150,150, (0,150,(1030 5,,
500,350) 350,350) 150,350) 350,500) 350,150)
POLY POLY POLY E DF

un.setptr 3

rectist rectlist rectlist

Net N --ete

", tnum Inetnim 2enu

Figure 4.5 - The data structures created after geometric extraction

I
I
I

45

structs) to point to the transistor that is connected to the rects. Notice in Figure 4.5 that the

netnum's of the nets are used for the transistor's dnetnum, gnetnum, and snetnum.

This final data structure is then passed to the parasitic extraction module where the rectan-

gles in each net's rectlist are used to compute parasitic resistance and capacitance values.

4.2. Parasitic Flat Extraction

Once the rectangles of each net are collected, the parasitic resistance and capacitance

values of each net can be computed. The input to the parasitic extraction module is the rectan-

gles of each net, and the rectangles are used to form a distributed RC circuit for each net.

As shown in Figure 4.6, there are two parasitic extraction modes in iCHARM; the first

extracts only parasitic capacitances for the rectangles of a net. All of the rectangles of the net

are considered equipotential and each rectangle is modeled as a single capacitance to ground.

The total capacitance of the net is the sum of all of the capacitances for each rectangle.

1. Capacitance Only 2. Resistance and Capacitance

.1 p. p

F . pe 4o

t i

Figure 4.6.- Two modes of parasitic extraction

I
46

The second parasitic mode extracts resistances and substrate capacitances for each net. In

so doing, the net is modeled as a distributed RC circuit and all of the recta-gs ' f net are no 5
longer considered at the same potential. Within each net, electrical nodes are formed with resis-

tances between them. This is the basis for the difference between a "net" and a "node" in 3
iCHARM's terminology.

As one can imagine, resistance extraction is more computationally demanding than capaci- 3
tance extraction. Furthermore, the addition of resistances to the extracted circuit increases the

number of electrical nodes that must be simulated and can lead to complex RC networks. In

most cases, sufficient simulation accuracy may be attained with only capacitance extraction; in

the cases when resistances need to be extracted, the RC network can be approximated by a

smaller network by a node reduction phase that is featured in iCPEX [15].

4.2.1. Data structures for parasitic extraction 3
Two data structures are used by iCHARM for parasitic extraction: the branchnode and edge

structs that are shown in Figure 4.7.

I
/* B R A N C H N 0 D E - a branchnode strct */
typedef struct _branchnode I

long nodenum; /* the number of the node */ I
boolean marked; /* a flag used in various algorithms */
char branchtype; /* BRANCH, KNOT, UNKNOWN, or NOTOUCH */
char port; /* is POLYPORT, DTFFPORT or NOTPORT */
int numconn; /* number of touching rects, transistors */
struct _rect *chanptr, /* used if DIFFPORT, gives chan rects */
struct _edgenode *edges; /* edges to connecting branch nodes */
float cap; /* the capacitance of the node */ I

I branchnode, *branchnodeptr,

P E D G E N O D E -an edge struct /
typedef struct _edgenode I

struct _rect *rect2; /* pointers to the other rect /
float cap, res; /* capacitance, resistance */
boolean marked; /P a bit field used in algs */
stnict _edgenode *nextptr,

I edgenode, *edgenodeptr,

Figure 4.7 - Branchnode and edge data structures

I
I
I

I
I 47

A basic operation performed for both capacitance and resistance extraction is the creation

of an "electrical connectivity graph" (the terminology is from Belkhale [2]) from the rectangles

of the net. Each rectangle is a node or vertex in the graph, and edges are created from each rec-

tangle (branchnode) to each of its adjacent rectangles. The electrical connectivity graph is used

to calculate the capacitance of each rectangle and to model the rectangles as an RC network.

The electrical connectivity graph can be easily constructed by the scanline algorithm shown

in Procedure 4.3. To create a graph from a collection of rectangles, first a branchnode struct is

created for each rectangle (it is attached to the bnode pointer of the rectangle). The rectangles of

I
Procedure 4.3 - Electrical connectivity graph creation procedure

CreateGraphO
Input: net: contains a list of rectangles to process.
Output: The net's electrical connectivity graph has been created.I}

CreateGraph(net)
begin

for all rects, prect, in the net's rectlist;
add branchnode to prect's bnode field;

ScanlineAlg(net's rectlist);
end;

AddToScanlineO
Input: prect: the rectangle to process and add to scanline.
Output: A net struct is created for prect, the nets of the rects in the scanline that touch prect

are combined, and prect is added to the scanline structure.

AddToScanline(prect)
begin
{find all rects already in scanline that touch prect

for all rects, srect, in scanlire that touch prect do
begin

if srect and prect are on the same layer then

1 make an edge from prect to srect and vice versa;~end;
add prect to scanline;

end;

48

the net are run through a scanline algorithm with the AddToScanlin-() procedure, as shown in

Procedure 4.3, in which an edge struct is made for each adjacent rectangle. The end result is that

each rectangle can access all of its adjacent rectangles by going through its list of edges in the

edges field of the branchnode. Figure 4.8 shows a set of rectangles, its connectivity graph, and

the branchnode/edge structure created for it.

4.2.2. Capacitance extraction

The parasitic capacitance of a conductor process is made up of the conductor's capacitance

with respect to the chip substrate as well as with other neighboring conductors. The former

capacitance is called the substrate or self-capacitance, and the latter is called the coupling

Rectangles Data structure

node ect A

edge bnode

Branchnode

nodee ge no eedges

[nod" t-°-(no€ I - dg rect2 Rect B

D n°e° g et Retnextptr

de d MCC Rect C

nextptr dgIect

dg rect2 0 Re

Figure 4.8 - Electrical connectivity graph example I

I
I

I
49I

capacitance. In iCHARM, the substrate capacitance of each rectangle is calculated by modeling it

as a single parallel-plate capacitor to ground. The capacitance can be accurately modeled by the

following equation which uses the area and perimeter of the rectangle:

I Caprect = arearect x Karea[layerrecr I + perimrect x Kperi,[layerrect]

where arearect is the area of the rectangle, and perimrect is the rectangle's perimeter. The

K a[Iayer] and Kp.,im[layer] are constants for each mask layer. The perimeter component of

the capacitance tries to account for the sidewall capacitance of diffusion regions and is negligi-

ble for other layers. The capacitance layer constants are given values from a technology file that

iCHARM reads upon startup.

The capacitance extraction procedure is shown in Procedure 4.4. The procedure uses the

CreateGraph0 procedure to connect each rectangle with its adjacent rectangles. Then, the

capacitance of the net is calculated by summing the contribution of each rectangle. The total

perimeter of the net is calculated by adding together the perimeter of each rectangle, but the

I
* Procedure 4.4- Capacitance extraction procedure

CapF.aract0
Input: net: contains a list of rectangles to calculate capacitance for.
Output: The net's capacitance has been calculated.

CapExtract(net)I begin

CreateGrapb(net's rectlist);
cap +- 0;
for all rects, prect, in net's rectlist do begin

area -- area of prect;
perim +- perimeter of prect;
for all edges, e, of prect do I adjust perimeter to exclude abutting edges I

perim +-perim - length of common edge of prect and e's rect2:
cap <-- cap + area x K..[layerpc,] + perim x Kptim[layerprer];

end;U net's capacitance +- cap;
end,

I
I
I

I
50

common edge of abutting rectangles must be deducted from the total perimeter value. For I
example, the total perimeter of two rectangles is shown emboldened in Figure 4.9. In this situa-

tion, the common segment must be deducted from the total perimeter.

4.2.3. Resistance extraction

Resistance extraction presents more difficulties than capacitance extraction, since resistance

depends on current flow through a conductor. To accurately calculate the resistance of a region

between two contacts, the Laplace equation, V2V = 0, must be solved with the boundary condi-

tions determined by the region and the contacts. Numerical techniques such as the finite-element

method (I-EM) may be used to solve for the resistance but this is practical only for a small

number of rectangles.

Simple formulas are used in iCHARM to make the resistance extraction of medium-sized

layouts practical, but of course without the accuracy of FEM techniques. The iCHARM program

uses the resistance extraction procedure in iCPEX [15]. Other references include Horowitz [6].

4.2.3.1. Resistance formulas U
The conductor geometries for the resistance formulas in this section are shown in Figure

4.10. For long, straight interconnect lines, the simple one-dimensional resistance formula is

used: I

I

Total Perimeter of the U
Two Rectangles in Bold:

C3I

Figure 4.9 - The perimeter of two rectangles 3
I
I
I

I
I 51

lelenth

where Rh is the sheet resistivity of the layer of the rectangle. The t factor is the number

of square regions between the ends of the rectangle.

Simple Conductor

A73 AAA width

RI
length -- I

Abutting Rectangles on the Same Layer

T T- T
w2 AWN...w' .,.....: w3?:

R2 R3 RN

I L 3 -. i

Right-angle Bend
--- W -

W 2

Figure 4.10 - Resistance formulas

I
52

For abutting rectangles of the same layer (as shown below) with differing widths, the total

resistance is calculated by

Rg= gRh

This assumes that the direction of current flow is known to be across the abutting rectangles and

parallel to the length measurement. In Su [15], the error in this equation is reported to be hard to

control but is tolerated in order to keep the calculation simple.

The resistarce through a right-angle ber.d is not as straightforward as counting squares due

to current crowding effects. An analytic formula from Su [15] (first given in Hall [5]) is used, 3
which assumes a > 1: I

2n 4a + a2 -1 cos tI ah+1 R I
R=a n 2+ c

where a= w
W2

4.2.3.2. Resistance extraction process

To handle arbitrarily-shaped conductors in the "real world," the direction of current flow

must be estimated. To do this, the rectangles of a net are decomposed into another set of nono-

verlapping rectangles that cover the same area but indicate the direction of current flow. All of

the rectangles of the net are classified as either branch or knot rectangles. This step is called

branch creation.

A knot rectangle is defined to be a rectangle that abuts with more than two rectangles, or

with just one other rectangle. A port is a rectangle that forms the gate, source, or drain terminal

of a transistor. Ports are also considered to be knot rectangles. Finally, all other rectangles are I
classified as branch recangles. Figure 4.11 shows a set of nonoverlapping rectangles created by

rectangle decomposition and identified as either branches or knots. Notice in the figure that the I

branch rectangles define paths, or branches, between each knot for current flow. The resistance

formulas given above are used to calculate the resistance for each current path or branch.

53

G H IKnots or Ports: 1,3,4,7,8
D F Knots: 2,5,6

ICBranch Rects: A,B,C,D.E,F,G,H,

BI,J,K,L,M,N,O15 Branches: 1,A,B,2 6,M,7

Jl2,C,D,3 6,N,O,8
L2,E,5K L 5,F,G,H,I,4

5,J,K,L,6

Figure 4.11 - Rectangle decomposition for branch creation

The actual steps in resistance extraction are the following; the reader may follow along

with the example given in Figure 4.12.

(1) The electrical connectivity graph is first created to connect adjacent rectangles of the net.

(2) The graph is used to perform rectangle decomposition and branch creation. First, the rec-

tangles are converted into a set of nonoverlapping rectangles that cover the same area as the

original rectangles and are in maximal horizontal form. Then the long horizontal rectangles

are combined vertically. In this step, if a rectangle is at least twice as wide as it is tall and

it completely abuts with another rectangle above or below, then the two rectangles are com-

bined.

(3) Next, the rectangles are split to create knots. Abutting rectangles that create "T-junctions"

are split by projecting the vertical sides of the bottom rectangle across the top rectangle

(see Figure 4.13). This is the final form for the rectangles of the net.

(4) The knot and branch rectangles are then identified. Each knot is given a node number

because the knot rectangles will become the terminals for the resistances. The transistor

terminals also have node numbers since ports are knots.

(5) Once the branch and knot rectangles are identified, each branch is traversed to calculate the

resistance of the branch using the simple formulas.

I
54 I

I
1. Original Rectangles 2. Maximum Horizontal Form

3. Combine Vertically 4. Split Rects U Create Knots

I J I

5. Identify Branch and Knot Rects 6. Traverse Branches, Calculate R & C

mot hrc ranch bran -h
rancran-h

Figure 4.12 - Resistance extraction

I
When the resistance is calculated for each branch, the subs'rate capacitance is computed as

well. The capacitance contribution of each rectangle in the net is calculated as in Procedure 4.4,

with the length of any abutting side deducted from the perimeter value of the rectangle. The

capacitance of each knot rectangle is calculated first, then the capacitance of each branch rectan-

gle is computed. The branch capacitance is computed when the branches are also being

I
I

55

EI

I Knot Rect
Created

IFigure 4.13 - Splitting rects to create knots

1
traversed for the resistance calculation. The capacitance of each branch is lumped onto either

end (which is a knot) equally, that is, one-half of each branch capacitance is added to the capaci-

tance of each knot of the branch. The total capacitance of each knot is then reported as the

capacitance of the knot's node number with ground.

4.3. Power Bus Extraction

In addition to functional and performance verification, circuit extraction can be used to

I• predict the reliability of a given layout. This section describes a reliability analysis system using

the CREST, JET, and iCHARM programs. The system uses the extracted output from iCHARM and

is shown in Figure 4.14.

4.3.1. A reliability analysis system

One failure mechanism is caused by electromigration in the metal lines that make up the

power supply busses of a chip. Electromigration occurs when the current density is high in sec-

tions of the power busses which can, over time, displace the metal atoms in the busses to create

gaps. The failure rate of a design can be specified by the median-time-to-failure (MTrF) of the

design that is caused by electromigration. The MTF can be estimated from the current drawn by

the circuit from the power supply busses.

Probabilistic simulation has emerged as a promising and computationally-efficitnt method

to estimate the current drawn by a circuit. The CREST program [101 uses such an approach to

produce expected current waveforms for each point in a circuit where current is drawn from the

power busses. Instead of exhaustively simulating the -ffect of every possible input on the

current load of the power supplies, CREST uses probabilistic inputs to a circuit to develop

I
I

56

Ii

Ckt. RS II

Lyu Expected Current WaveformsU

CPow n E Probability MTPower and JET---urrETnt Modelig N--- TrF

Ground Net Dente
Rectangles Densities

Figure 4.14 - A reliability analysis system using iCHARNI, CREST, and JET3

expected current waveforms at every contact point on the power busses. The contact points are

located where transistors connect to the power or ground net. I
The JET (current density Extraction Tool) program [3] was developed to calculate the

current densities within the metal lines of the power busses. The JET program takes as input the

rectangles of the power busses and creates an RC network model of the power busses similar to

the resistance extraction done by iCHARM. Using the expected current waveforms at the contact i
points from CREST and the geometry of the power busses, JET produces a current density

waveform for each resistive branch in the power busses. From the current densities, MVF values i
can be calculated for each section of the power bus.

In Figure 4.14, the reliability system being described is shown. The iCHARM program is i
run in its "power bus extraction" mode to produce the output used by CREST and JET. The

extracted circuit description produced by iCHARM is passed on to CREST. The CREST program I
outputs an expected current waveform at each power bus contact point. The iCHARM program

outputs all of the rectangles of the power and ground nets for JET. i
A sample of the input and output for the r,,"ver bus extraction mode is shown in Figure

4.15. The layout shown is a three-input CMOS NOR gate.

I
I

57

Layout Extracted Layout with Labeled Contacts

... U....._

W ;I I ;::: ::;; ;

141:

Pont

I1 4 1 2- -1

I~0 Exrce0ici5xrctdCrutwt pi
and- Reubee Conac

IGND 91t

Figure 4.15 - Inputs/Outputs of iCHAR NI for po'i er bus extraction

I
58 I

The power bus extraction mode also splits and renumbers each contact point. Each transis-
tor connection to the power or ground net is given a new net number in the extracted circuit out- -
put. In the layout that is sent to JET, the new net number is also used to label the location of a

contact window where the transistor connects to the power bus. In the top left of Figure 4.15, i
the complete layout is shown. The rectangles of the power and ground nets that are given to JET

are in the top right of Figure 4.15. The schematic of the regular extracted output of iCHARM is

shown in the bottom left of Figure 4.15; the renumbered output given to CREST is shown in the

bottom right. In Figure 4.15, there are two renumbered contact points ("9" and "10") where the

three transistors connect to the ground bus since two transistors share one connection to ground.

The contact points are renumbered and labeled so that CREST will output current waveforms

using the new net number. The JET program is able to input the current waveform to the

corresponding transistor contact point in the layout by finding the label with the same net 3
number. Outputting the rectangles for the power and ground nets is straightforward in iCHARM

since they are already collected in the geometric extraction step. The major problem is finding

the correspondence between a power bus contact point in the layout and the transistor that is I
connected to it.

4.3.2. iCHARM's power bus extraction mode

A scanline algorithm is used to split and renumber the transistor contact points. The power
bus extraction procedure, which is presented in Procedure 4.5, is run after the geometric extrac-

tion step. The scanline algorithm takes the rectangles of either the power or ground net as input 3
and produces a list of diffusion island structures. Each diffusion island structure holds a list of

abutting diffusion rects and a list of metal-diffusion contact rects that are connected to them.

The diffusion rects that define a diffusion island form a contiguous "island" of rectangles.

Once all of the diffusion islands have been collected, the renumbering is done. One contact 3
rect is output for each diffusion island. It is chosen to be roughly in the middle of the diffusion

island. A label with the new net number is output with the same location as the chosen contact 3
rect. The drain/source connections of transistors connected to each diffusion island are renum-

bered. This involves using the un.tranpt pointer of each drain/source diffusion rectangle to reach 3
the connected transistor. The snetnum or dnetnum field of the transistor is renumbered depend-

ing on whether the power bus is connected to the source or drain of the transistor. 3
I
I

59

Procedure 4.5 - Power bus extraction procedure

ExtractPwrBusO
Input: net: a power or ground bus net. If rects in net's rectlist are drain/source rects, their

un.tranpt field has a pointer to the list of transistors that the rect is connected to.
Output: The net's rectangles have been output and the contacts renumbered.II

ExtractPwrBus(net)
begin

ScanlineAlg(net's rectlist); (create diff-island structure I
ProcessDifflslands(net);

end-,

AddToScanlineO
Input: prect: the rectangle to process and add to scanline.
Output: If prect is a diff or contact rect, then it is added to a new or existing diffusion island

and the scanline; else just output prect to the extracted power bus file.

AddToScanline(prect)
begin

if prect is a diff or contact rect then
begin
bi make a new diffusion island, newdi, and put prect in it;

find all rects already in scanline that touch prect)
for all recta, srect, in scanline that touch prect do
begin

if srect and prect connect then

combine the diffusion islands that contain prect and srect,

add prect to scanline;
end;

output prect to extracted power bus file;
end,

I
DeleteFromScanlineO

Output: All recta past curscan are deleted from the scanline structure.

DeleteFromScanlineO
begin
I flush all recta in scanline past curscan }

for all recta, srect, with X,,,. < curscan do
srect (-- Pop(scanline);I end,

I
I

I
60

In Figure 4.16 the diffusion island struct that was built for the ground net of Figure 4.15 is

shown. There are two diffusion islands built for the ground net. Only one contact rect is

extracted for each diffusion island. The new net number labels of "9" and "10" are output at the

contact rect locations. The diffusion rects that have connected linkel structs are drain/source

I
Procedure 4.5 - Power bus extraction procedure (continued)

ProcessDifflslandsO I
Input: net: a power or ground bus net. Upon entry, the diff island structure has been created.
Output: For each diff island,

1. A label is output at the location of one contact in the diffusion island using the new net U
number.

2. The transistor terminals that are connected to drain/source diff rects are renumbered with
the new net number. 3

ProcessDifflslands(net)
begin

newnetnum (-- total net count of the circuit + 1;
for each diffusion island, di, do
begin

get the median contact rect, contrect, in the diffusion island;
output contrect to extracted power bus file;
output a label of "newnetnum" at contrect's location to the extracted power bus file;
for all diff rects, drect, of di do
begin

output drect to extracted power bus file;
I renumber the transistor terminals with newnetnum}

if drect a drain/source rect for a transistor then 3
begin

for all transistors, tran, in drect's linkel list do
begin

if snetnum of tran = netnum of net then
tran's snetnum +-- newnetnum;

else if dnetnwm of tran = nenum of net then
tran's dnetnun <-- newnetnum;

end,
end;

end,
increment newnetnwn;

end;
end;

I
I
I

I
61

H Renumber
1. Output this contact rect Tran Tran
2. Output label "10" at senmIsenmILne

this contact rect locatio Snetnum 1netnum 1[DPiff
Ret lta sland diff Rect Rect Rect Rectret

nextptr /-

1. Output this contact rect Reume Tran(C2. Output label "9" at RenumberLinkel
this contact rect location snetnum 9 i

,m iff

SR contact Island diff Rect Rect Rect Rect RectI

Figure 4.16 - Diffusion island structure built for the ground net of Figure 4.15

rects for transistors. The connected transistor's dnetnum or snetnum field is renumbered using

the same net number as the label.

I
I
I
I
I
I
I
I

I
62

CHAPTER 5

I

U
iCHARM HIERARCHICAL EXTRACTION 3

I
5.1. Hierarchical Geometric Extraction 3

The use of hierarchy to accelerate the extraction process is discussed in this chapter. As

mentioned before, hierarchical extraction involves extracting each unique cell in the design 3
hierarchy only once and referring to the previously extracted information whenever an instance

of the cell is encountered. The alternative is to flatten the entire design hierarchy which repli- -
cates each instance of a repeated cell in memory and makes it necessary to repeat the extraction

procedure for each instance. Hierarchical e .:raction therefore offers a savings in space as well 3
as time. The amount of savings is a function of the amount of regularity, or number of repeated

cells, in the design being extracted. 3
Flat extraction is done on a cell that contains only mask geometries since any hierarchical

structure has been flattened away. The flat extraction procedure can be extended into a hierar- 3
chical one by enabling the extraction of a cell that contains instances as well as geometries. The

difficulty in the technique lies in the fact that a cell can be changed by any geometry that over- 3
laps the cell when it is instantiated. For example, a polysilicon line that is run over an instance

can short two connections in the interior of the instance or create a transistor where it crosses a 3
diffusion wire. Overlapping geometries can similarly break connections in an instance or

remove an existing transistor. Two instances may themselves overlap which can also affect the

internal connections of the instances.

Hierarchical extraction may be separated into techniques where overlapping is allowed or

not allowed. If overl'oping is disallowed, the design of the extractor is simplified but the

designer's freedom is constricted. The extraction process is made easier since cells only interact 3
on their boundaries, and their internal circuitry cannot be changed when they are instantiated.

Extraction of cells that contain both instances and geometries (non-leaf cells) is done by creating 3
nodes from the geometries, then connecting up the nodes that are at the instance boundaries.

I
I

63

Clearly, the use of restricted design styles to optimize a CAD tool is not practical. In fact,

allowing cell overlap is often desirable since it may reduce area. The existing approaches for

hierarchical extraction will now be surveyed. All of these programs create hierarchical data

structures to represent the input layout, then extract each unique cell only once while attempting

to handle the special cases created by overlapped instances.

5.1.1. Existing approaches to hierarchical extraction

The iCPEX program [15] implements a hierarchical extraction capability that handles a

minimal amount of overlap. It is meant to be used on designs where overlap occurs only spar-

ingly. The method that iCPEX uses first traverses the hierarchy of the design to detect overlap.

When overlap is detected, the overlapped instance is flattened into its parent cell. If overlap still

occurs with the subcells of the flattened instance, flattening is continued until no overlap occurs.

One can see that in dtsigns where overlap occurs at all levels of the hierarchy, this method will

flatten the entire design.

A typical situation that is "hard" for hierarchical methods is shown in Figure 5. 1. The cell

contains the entire chip, and consists of the padframe cell that "doughnuts" the rest of the

Ch
PadframeA D

__ L I

Figure 5.1 - A difficult case for hierarchical extraction

64

functional cells. Since the padframe cell overlaps all of the other cells, the iCPEX method would

flatten the entire hierarchy.

The disjoint transformation method proposed by Newell [11] handles overlap by recogniz-

ing similar overlapped areas and transforming the overlapped design into an equivalent one with

no overlap. In Figure 5.2, there are three instances A, B, and C that overlap. The hierarchy is

transformed by partitioning the geometries in A and B into A', B', and C'; the geometries in B

and C are partitioned into the new cells C', D' and E'. The resulting hierarchy of A', B', C', D',

and E' is nonoverlapping at the present level, but may contain further overlap within each cell.

The transformation process is carried out top-down until all overlap is removed by transforma-

tion. The method also attempts to recognize transformrd cells that are identical to reduce the

number of cells that are created.

The primary advantage to this technique is that once the transformation has been done, the

nonoverlap extraction procedure may be used. However, in some cases the transformed hierar-

chy may be as large as the completely flattened hierarchy. Furthermore, an additional translation

step is required to report the extracted results, since the extraction is done on the transformed

Original Hierarchy Transformed Hierarchy

Figure 5.2 - The disjoint transformation technique

65

hierarchy but the node and transistor labels should be reported to the user in terms of the original

hierarchy.

Similar to iCPEX, the Magic circuit extractor [14] handles overlapped instances by selective

flattening. However, instead of flattening the entire overlapped instance, only the area of overlap

is flattened into the top level cell. In Figure 5.3, only the geometries shown are flattened into the

parent cell. This reduces the amount of geometries that are flattened, but Magic will still flatten

the entire hierarchy for the padframe example given in Figure 5.1.

5.1.2. The iCHARM implementation

The iCHARM implementation of hierarchical extraction used the flat extraction code of the
PACE program as a starting point. The goal was to extend the basic extraction module to create a

hierarchical extraction capability by making use of existing code, avoiding any duplication of

functions, and minimizing the addition of too many new subroutines. In addition, it was felt that

IA
IB

Lj Flattened
into A

Figure 5.3 - How Magic handles o°erlap

I::::::::::::•,

I~f
I." _.. ltee

66

it was important to handle the padframe test-case without flattening because it is a situation that

commonly occurs.

Hierarchical extraction was implemented in two stages. The first stage, which will be

described first in this section, was implemented under the assumption that the input layout is

nonoverlapping. Subsequently, the modifications to allow overlapping were developed.

5.1.2.1. Nonoverlapping hierarchical extracthan

In Procedure 5.1, the top-level subroutines for extraction are shown. Hierarchical extrac-

tion is done by HierExtracto and flat extraction by FlatExtracto. Both routines call the routine

CellExtracto. For hierarchical extraction, the for-loop in CellExtract0 processes every cell in

bottom-up order. Each :ubcell of the present cell is checked to see if it has been extracted before

the present cell is extracted. If a subcell has not been extracted, CellExtract0 is called recur-

sively on it. CellExtract0 is called on every cell exactly once. For flat extraction the top-level

cell does not have any instances so CellExtractO is executed only on the top cell.

The other routines i '-ocedure 5.1 - InstantiateTerms0 and ReportSubcktHeader0 -

will be discussed after an introduction to the necessary modifications made to GeometricEx-

tract() to allow it to do hierarchical extraction.

In Figure 5.4, a simple hierarchical extraction example is shown consisting of a layout, its

extracted circuitry, and the Spice-format output. Cell A contains a single transistor. Recall that

for nonoverlapping designs, all instances connect to the outside world only at their boundaries.

These external connections are called the external terminals for a cell, and they are created

where the geometry of the cell touches the cell boundary. Cell A has four external terminals, but

two are connected to the gate of the transistor, so they are part of the same electrical node. In

Figure 5.4, the terminals are represented by the thick lines.

Cell B contains an instance of cell A. It has four external terminals as well. Cell B also has

four internal terinals that are connected to the instance of cell A. The internal terminals are

created from the external terminals of cell A when ccl! A was instantiated. External and internal

terminals are analogous to the formal and actual parameters of a subroutine: formal parameters

exist on the definition of a subroutine and actual parameters on the call of the routine.

In order to extract a cell that contains geometries and instances, the basic geometric extrac-

tion routine must be modified to use the rectangles of the cell and the internal terminals from the

instances of the cell. The rectangles of the cell are used to create nets in the usual manner; the

67

Procedure 5.1 - Hierarchical and fiat extraction procedures that share CellExtract()

I HRierExtract()
Input: cell: The top-level hierarchical cell to extract.
Output: cell and its subcells have been hierarchically extracted.

HierExtract(cell)
beginI CellExtract(cellO;
end,

I FlatExtract()
Input: cell: The top-level hierarchical cell to extract.
Output: cell has been flattened then extracted.

FlatExtract(cell)
beginI if cell is hierarchical then Flatten(cell);

CellExtract(cellO;
end-

Ipt c h cell to extract. The input rects are in cell's rectlist.

Outpu: Theextracted nets, termis, and transistors for cell in their respective lists.

I fq)r all instances, ins, in cell's instance list do
begin
extract all sub-cells first I

if inst-4deff-A~one is false then
Celffixtract(inst-4defh);

jinstantiate all external terms of inst into cell's internal terminal list
InstantiateTems(cell, ins:);

cell-4done <- true; Imark cell as done)
GeometricExtract(cell);
ParasiticExtract(ceii);

ReportSubcktHeader(cell); I print .subckt card for hierarchical extraction I
report transistors and parasitics for cell;
ReportSub%;ktEnd(cell);

end,

68

I
Layout CeI1 B

CelAtExt. inst of A
term

nt.
term

Cell B

Cell A inst of A

r n6I

.SUBCKT A 2 3 4 Note:
MO 2 3 4 0 nmos L=lu W=lu 1) In Subckt A, there are two terminals for
.ENDS A the gate node, but only the node number is

reported (3).
.SUBCKT B 2 3 4 5 2) In Subckt B, the feedthrough signal is
XI 2 6 3 A connected to only one signal (6).
.ENDS B I

Figure 5.4 - A simple hierarchical extraction example I

internal terminals are used to connect the nets of the cell to the instances. In addition, the extrac- I
tion procedure must create external terminals for the cell when rectangles touch the cell bounda-

ries. I
The term struct implements both the external and intemal terminals. The C-language

definition of the term struct is shown in Figure 5.5. The location and layer of a terminal are I
specified by its coord and layer fields.

69

/* T E R M - a terminal struct */
typedef struct _term (

long coord[41; /* xmin, ymin, xmax, ymax of the terminal */
char layer, /* layer number */
struct _net *setnet; 1* ptr to net (term is in netp--termlist) *1
struct _inst *setinst; /* ptr to inst (term is in instp-4termlist) */
struct term *setterm; [* scratch terminal ptr *[
struct -term *nextnptr, /* next term on the net's termlist */
struct _term *nextiptr, /* next term on the inst's termlist */

} term, *termptr,

Figure 5.5 - Term data structure

Figure 5.6 shows how the term struct represents the connectivity of the extracted instances

and netsilarly, the terminals of an instance start at the instance's

termlist field and follow the nextiptr field. This is illustrated in Figure 5.6: internal term TI con-

nects net NI and instance II.

For external terminals, only the connections to nets are needed. The setnet field of the term

points to its connected net. The list of external terminals for a cell begins at the cell's exttermlist

field. In Figure 5.6, one external terminal T4 is shown that connects to net Ni.

The hierarchical extraction procedure of Procedure 5.1 will now be demonstrated on the

example shown in Figure 5.4. In Figure 5.7, the example of Figure 5.4 is again presented along

with the data structures that are built for the two cells A and B.

In the absence of instances, geometric extraction is done exactly as before. As the input

rectangles are processed, however, a check is made to see if any of the rectangles touch the cell

boundary. A touching rectangle creates an external terminal that has the dimensions of the inter-

section of the rectangle and the cell's bounding box, this is a line segment.

I
70 I

Schematic Final Data Structure setnetI

I T4
N I instlist NINI terinlist termlist

T1 2 . nsttermlist e tiptr

nst termlist erm next tr erm nextiPtr

12 T2 T3
nexmptr nextnptr

Figure 5.6 - Cell connectivity represented with term structs

I
At the end of the extraction procedure for cell A, four external terminals are created that are

connected to three nets. Figure 5.7 shows an important test-case: cell A has a "feed-through" I
rectangle (the gate of the transistor) that creates two external terminals on either side of the cell.

The two terminals are physically separated, so from the outside of cell A it appears that the ter- I
minals are not connected. Since it is important to ensure that the two terminals are kept con-

nected, the two external terminals of cell A in Figure 5.7 point to the same net using their senet

fields.

After cell A has been extracted, the InstantiateTerms0 routine of Procedure 5.1 is called for I
the instance of cell A in cell B. This routine creates an internal terminal for each external termi-

nal of cells that are instantiated in the present cell. Cell B has an instance of cell A, so four I
internal terminals are added to cell B's inttermlist. When the internal terminals are created, new

net structures are also created. To retain the fact that two terminals are connected to the gate net 3
of cell A, the net's termlist has two elements as shown in Figure 5.7.

The extraction of cell B is more complicated than the extraction of cell A since cell B con- I
tains rectangles and (internal) terminals. The net extraction procedure using scanlines, which I

I

I 71

After InstantiateTermsO for Cell B Schemnatic

Ietpr nxit etprnxit Cell
erm nexti er ers

Cel intist etnexre nexbiPtr et nextnPtr efpt

IA

CeFlnl Dastu ture o C ell e Ben

B xttelist r nextitr e nxtitr emnextitr emnextiptr

I B t nexr etrextptr e nextnptr t nexptr

I ~~~~Fi gue57nHeacial exrctoata structure eorample

wa hw nedure .,mst b et emdifed top hniter nalt erm nalsaicalyth

I Add~~o~cani rotermust be od fiedt idadcmieuhn terminlsa wlla

rects. In addition, when two nets are merged, their termlists must also be combined. Again,

I
72

external terminals are created when rectangles or internal terminals touch the cell boundary. At

the end of the extraction of cell B, the final data structure is shown in Figure 5.7.

Finally, the hierarchical extraction results are reported in Spice format using .SUBCKT state-

ments as shown in Figure 5.4. The .SUBCKT statement reports the extracted results for a cell: the

instances that the cell contains, and the ports, or externally-connected nets, of a cell. This is

done by the ReportSubcktHeaderO routine in Procedure 5.1. To report the ports of the cell, the

routine visits each terminal in the external terminal list for the cell and prints the netnum of the

net that is conected to the terminal. More than one external terminal may be connected to a net,

but the net is reported only once.

5.1.2.2. Handling overlap in hierarchical extraction

It has just been shown that when a nonoverlapping layout is assumed, geometries connect

only at the boundary of a cell. When overlap is allowed, the connections to geometries in the

interior of a cell need to be recognized. To implement the handling of overlap, a design goal

was to recognize the more common cases where overlap causes interior signals to become ports,

yet keep the overhead of the method low. The iCHARM program still assumes that most of its

cells are not overlapped and most of the connections to a cell occur at its edges.

The most common cases of overlap are shown in Figure 5.8. The cell on the left shows a

rectangle overlapping a cell instance and two instances that overlap each other. A more difficult

Inst-inst overlap

ID I

Rect-inst overlap Inst-inst complete overlap

Figure 5.8 - Common overlap situations

I
II
I

73

case is shown on the right of the figure, where one instance completely envelops another; this is

the padframe case that was previously shown in Figure 5.1. An important feature of iCHARM is

that the latter case is handled without flattening.

I To handle overlap in iCHARM, the basic idea is to visit each unique instantiation of a cell in

order to create a list of overlap-rectangles for each cell. This is done as a preprocessing step

I before geometric extraction. The list of overlap-rectangles is a record of all the rectangles that

overlap any instance of the cell. For example, in Figure 5.9, three instances of the same cell are

I shown; as a result, three overlap-rectangles are created for the cell.

Subsequently, when the cell is being extracted (in CellExtractO), every rect of the cell is

checked to see if it either

(1) touches the cell boundary, or

I (2) touches, and is on a connecting layer, with any overlap-rect.

Cel. einkion Overlanned instance of the cell

Cell A

Overlat-rects created

Figure 5.9 - Overlap rectanglcs created for three instantiations

I
74 I

If a rect fulfills either condition, an external terminal is created from the rect. In Figure 5.9, cell

A contains five nets, and all five are made into ports since they are all connected to external ter-

minals: four rectangles are on the boundary of the cell, and the internal rectangle touches an

overlap-rect.

5.1.2.2.1. Overlap-rect transformation

The overlap-rects for a cell are defined in the cell's coordinate system. The step that I
creates the overlap-rects finds the intersection of a rect that overlaps an instance of the cell. To

convert the rectangle of the intersection into an overlap-rect for the cell, it has to be mapped I
from the coordinate system of the instance back to the coordinate system of the cell definition.

In Figu:e 5.9, the three instances of the cell are in different orientations relative to the cell I
definition, thus the rectangles that overlap the instances must be rotated back in terms of the cell

definition to create the overlap-rects.

The transform matrix is defined for each instance, therefore, it seems that it also can be

used to go from an instance "backward" to the cell coordinate system. Using transformation I
matrix T to transform a coordinate (x, y) in the cell coordinate system to a coordinate (x', y') in

the instance coordinate system, the equation previously shown is 3
[x'y' 1] = [x y 1]T

By multiplying both sides by T-1 , the inverse of the transformation matrix, one arrives at 3
[x'y' 1]T - ' = [x y 1] 3

The routine InvTransformCoordsO shown in Procedure 5.2 accomplishes the coordinate 3
transformation. The rect argument for InvTransformCoords() is the region of intersection

between an instance and any rect that overlaps it. The rect is translated to the cell's coordinate 3
system to create an overlap-rect for the ceil.

In general, all transformation matrices are not invertible. However, in iCHARM the 3
Inverse() routine in Procedure 5.2 is defined only for a restricted class of transformation matrices

that occur with 900 rotations:

I
I

I
1 75

I
Procedure 5.2 - Transforming from the instance coordinate system to the3 tell definition coordinate system

InvTransformCoords0
Input: tmatrix: transform matrix of instance

rect: rect in instance coordinate system
Output: returns rect transformed into the cell definition coordinate system.

InvTransformCoords(tnatrix, rect)
begin

invtmatrix (-- Inverse(tmatrix);
transform coords of rect using transform matrix invtmatrix;
retum(rect);

end,

I alc b/c 0
T = -b/c a/c 0

1 0 0 1

where c = 'a2 + b 2 . Since only 90' retations are allowed in iCHARM, a = +1 and b = 0. or a = 0

f and b=±1; c= 1.

5.1.2.2.2. The overlap-rect procedure

The preprocessing step to create the overlap-rectlist for each cell will now be presented.

The procedure is shown in three parts, in Procedure 5.3 a, b, ;d c.

In Procedure 5.3a, the modified HierExtractO is shown that calls ProcessOverlap() before

CellExtract() to create the overlap-rects. ProcessOverlapO has two major functions. First, it

analyzes the rectangles and instances in the given cell and identifies any overlapping areas. Rec-

tangles may overlap instances, or instances may overlap each other. The ScanOverlap(routine

uses a scanline algorithm to detect the overlapping rectangles or instances and, if overlap is

found, then an overlap-rect is created for the cell of the instance.

ProcessOverlap() is called once by HierExtract() to find the overlapping areas for the entire

3 design hierarchy. Therefore, the second function of ProcessOverlap) is that it traverses the

hierarchy -uch that if a cell is instantiated n times, ProcessOverlap() may be called n times to

I
I

76

Procedure 5.3a - Hierarchical extraction procedure that handles overlap - part I

HierExtract()
Input: cell: The top-level hierarchical cell to extract.
Output: cell and its subcells have been hierarchically extracted.

HierExtract(cell)
begin

ProcessOvertap(cell);
CellExtract(cell);

end,

I I
ProcessOverlap()
Input: cell: The top-level cell to preprocess.
Output: The overlap-rectlists for all cells have been created.

ProcessOverlap(cell)
begin

if cell--*done is false if not already done, mark cell as done
cell--*done *-- true;

Pro pagateOviprectsTolnstances(cell);I
ScanOverlap(cell);

for all instances, inst, in cell's instance list do3
begin

if inst-4defr1-Wone is false then

en; ProcessOverlap(inst-4defn);

end,

find every situation where overlap occurs. For instance, if a cell is instantiated in three differentI

ways, as was shown in Figure 5.9, the cell may be overlapped in up to three different ways as

well. Since most designs use repeated instances, ProcessOverlap() limits the number of timesI

that it is called for the same cell, Tne hierarchy traversal is accomplished in ProcessOverlap()

by using the cell's done flag, the PropagateOvlprectsTolnstances() routine, and by calling itselfI

recursively at the end of the routine.

The ScanOverlap() routine, which is shown in Procedure 5.3b, will be discussed first, andI

wil be followed by a discussion of the hierarchy traversal function of ProcessOverlapo.

77

Procedure 5.3b - Hierarchical extraction procedure that handles overlap - part 2

I ScanOverlap()
Input: cell: Tbe rect-inst and inst-inst overlap will be found for this cell.
Output: The ovlprectlist for the definitions of the overlapped instances has been updated.

Scan~verlap(cell)
beginI for all instances, inst, in cell's instance list do begin

let tmprect (-- bounding box of inst,
mark tinprect as an "instance rect."

Uend; add tmprect to cell--4rectlist;

ScanlineAlg(cell- rectlist);3 end;~

AddToScanllne()
Input: prect: the rectangle to process and add to scanline.
Output: Overlap of an instance is found, the appropriate ovlprectlist is updated,

and prect is added to the scanline structure.

I AddToScanline(prect)
begin

Ifind all rects already in scanline that touch prect II for all rects, srect, in scanline that touch prect do
begin

if srect and prec: overlap then begin
xsect *-- overlap-region(prect, srect);I if srect and prect are both marked as "instance rects" then begin

pinst 4- instance for prect;
sinst +- instance for srect;
ProcessOvlplnstances(pinst, xsect);

en;ProcessOvlplnstances(sinst, xsect);

else if srect or prect are marked as "instance rects" then begin
if prect is marked as an 'instance redt then

inst (-- instance for prect ;
else if srect is marked as an "instance rect" thenI inst (-- instance for srect:;
fmprect 4-- InvTransformCoords(inst-4tfmnatrix, xsect);
InserOvlprect(tmprect, insi-*defni);I end;

end;
end;3 add prect to scanline;

end-

I
78

To detect overlapped instances, ScanOverlapo creates special rectangles from the bounding i

box of the instances and marks them as "instance rects." A scanline procedure is then used to

find any rectangle that overlaps an "instance rect." The AddToScanline0 routine in Procedure

5.3b is used to detect the overlap. If a rect-inst overlap is found, then the region of overlap is

found. The overlap region is found relative to an instance, so it is transformed back in terms of

the cell definition of the instance by InvTransformCoordso. The InsertOvlprect0 routine is used

to add the rect to the definition's overlap-rectlist.

When an instance-instance overlap is detected by AddToScanline0, the ProcessOvlpIn-

stances() routine is called. When an instance is overlapped with another instance, an overlap-

rect is made from the area of intersection, and the layer is set to the special all-connect layer.

This layer is not a real mask layer, but the layer is made to connect to all other layers. If an

overlap-rect is on the all-connect layer, then during geometric extraction, an external terminal is

created for any rectangle, regardless of its layer, that touches the overlap-rect.

When two instances overlap, all nets in the area of overlap must be "ported," or connected

to the outside of the cell. Figure 5.10 shows a situation where this is the case. The instances of

cell A and B overlap. Cell A has instances of cell C and D. Cell B cortains rectangle B 1 that

overlaps rect CI of cell C and rect Dl of cell D since B overlaps A. All rectangles in the overlap

I
Procedure 5.3b - Hierarchical extraction procedure that handles overlap - part 2

(continued)

ProcessOvlplnstancesO(
Input: inst: instance that is overlapped

xsect: the overlapped region
Output: An overlap rect is added to the definition of inst.

ProcessOviplnstances(inst, xsect)

begin
tmprect--layer <- ALL-CONNECT;
tmprect 4-- InvTransformCoords(inst-4tfmatrix, xsecn);
if tmprect and inst's bounding box are not equal then

InsertOvlprect(tmprect, inst--defn);

_ _!

end

I

U
79

lCell Deinitions Overlaooing Instances

A A

A

U B
I I'

3 -'i D!

3 B

I~~ LIIIIi

I
*h D I

Figure 5.10 - Instance- instance overlap

area of A and B must be made into external terminals. This is accomplished by creating an

3 overlap-rect on the all-connect layer, since this causes an external terminal to be made from rects

Cl and DI.

I ProcessOvlpInstances() contains an important assumption that is made in ICHARM. If an

instance 3 completely overlaps aa instance a, then it is assumed that 3 contains no rectangles im

3 the area of cc. This is true in the padframe case. In iCHARM, no overlap-rect is made that covers

the area of the overlapped instance cc. Therefore, if 3 has any rectangles over cc, the interior nets

3 of cc that are under the rectangle will not be connected to 13.

I
I

I
80

On the other hand, if an overlap-rect to cover aX were made, then all of the rectangles of cc

would be made into external terminals. Furthermore, all of the rectangles of the instances of ax

- in fact for all of the descendants of ax - would become terminals as well. This would create

too many external terminals and would slow down the geometric extraction step. The extracted

results would not be incorrect, but all internal nets would be made into ports for the cell. There-

fore, in iCHARM, if ai instanLe is completely overlapped, ther it is assumed that all corrections

to it will occur at the boundary of the cell.

The routines sketched in Procedure 5.3c control the traversal of the hierarchy by Process-

Overlapo. in ProcessOverlapO, the cell's done flag is used to mark if a cell has previously been

visited. A cell's flag is immediately set to "done" upon entry to ProcessOverlapo. Then, the

overlap-rects for the cell are propagated to the cell's instances by the PropagateOvlprectsToIn-

stances() routine. In Figure 5.10, the overlap of instance A with instance B creates an overlap- I
rect. The overlap-rect covers more than half the area of instances C and D. In Propaga-

teOvlprectsTolnstanceso, the intersections of the overlap-rect of A with instances C and D are

calculated; then an overlap-rect is created for definition of both instances. The overlap-rect for

C in turn causes rect C1 to be made into an external terminal and similarly for D and Dl.

ScanOverlapO and PropagateOvlprectsTolnstances0 may both add overlap-rects to a cell. 1
If an overlap-rect is added to a cell's list, then the cell must be revisited by ProcessOverlapo,

since the overlap-rect may have to be propagated to the instances of the cell. Therefore, in

InsertOvlprecto, the cell's done flag is set to "un-done." Subsequently, at the end of Process-

Overlapo, each instance is checked to see if it needs to be revisited, since its flag may have been 3
unset during the course of the current call. This method visits each cell the minimum number of

times and avoids calling ProcessOverlap0 for every instance in the design as long as some 3
instances are identical.

5.2. Hierarchical Parasitic Extraction

The flat parasitic extraction module in iCHARM as previously described takes the rectangles 3
of the cell as input. The extraction procedure needs to be modified when each cell .'iso contains

instances. 3
I
I
U

81

II
Procedure 5.3c - Hierarchical extraction procedure that handles overlap - part 3

PropagateOvlprectsToInstances0
Input: cell: The current cell being analyzed.
Output. If an overlap-rect for cell overlaps an instance, the overlap.-rct is propagated

to the definition of the instance.

PropagateOvlprectsToInstances(cell)
begin
{ propagate overlap rects of cell that also overlap the instance

for all instances, inst, in cell's instance list do5 begin
for all rects, ovlprect, in cell's overlap-rectlist do
begin

if ovlprect and inst's bounding box overlap then
begin

xsect -- overlap-region(ovlprect, inst's bounding box);
tmprect +- InvTransformCoords(inst-4tfmatrix, xsect);
InsertOvlprect(tmprect, inst---defn);

endend;
end

InsertOvlprect0
Input: rect: overlap-rect to insert

cell: cell whose instance is overlapped
Output: rect is inserted into cell-ovlprectlist, done flag set to reprocess.

InsertOvlprect(rect, cell)
begin

insert rect into cell--ovlprectlist;
I since ovlprectlist has changed, ProcessOverlapO must be called again I

if cell--done is true then

e cell-done +- false;

5.2.1. Hierarchical capacitance extraction

When a cell is extracted hierarchically, capacitance adjustments have to be made for the

nets that are connected to instances. Recall that the substrate capacitance equation uses the area

and perimeter of each rectangle of a net to compute the net's capacitance. In the flat extraction

82

procedure, when two rectangles abut, the shared segment must be deducted from the total perim-

eter of the net. Similarly, when the terminals of two instances abut, or when a rectangle abuts

with an internal terminal, the length of the abutment must be deducted from the perimeter of the

net. In addition, if a terminal of an instance is overlapped by a rectangle, then the area of inter-

section must be deducted from the area of the equation. Figure 5.11 illustrates these situations.

In Figure 5.11, two rectangles are inside of the instance; the other two rectangles are outside of

the instance and connect to the instance by abutment and overlap.

The hierarchical capacitance extraction procedure, which is shown in Procedure 5.4, was

created by modifying Procedure 4.4 to handle instances. The scanline procedure of Procedure

4.4 finds the abutting rectangles of a net to adjust the capacitance. Procedure 5.4 must also find

the abutting terminals of the net in order to handle instances. To do this in the scanline pro-

cedure, rect structs are made with the same coordinates as the terminals and added to the rectlist

Situation segment length must be deducted from perimeter of net A

A

B

Situatjon intersection area must be deducted from area of net B

Figure 5.11 - Capacitance adjustment when connecting to an instance

I
I
I

83

of the net. Then the scanline procedure finds the touching rects of the net (including the termi-3 nals) by processing the rectlist.

Recall that external terminals are created in two ways:

3 Case I

A line segment is created for the external terminal when a rect touches the cell boundary.3 The terminal is the intersection of the rect and the cell boundary.

Procedure 5.4 - Hierarchical capacitance extraction procedure

CapExtractO
Input: net: contains a list of rectangles and (internal) terminals to calculate the capacitance for.
Output: The net's capacitance has been calculated.

CapExtract(net)
begin

add the terminals in net's termlist to net's rectlist;CreateGraph(net's rectlist);

cap +- 0;
for all rects, prect, in net's rectlist do
begin

area +- area of precr,
perim +- perimeter of prect,
for all edges, e, of prect do
begin

if prect and e--rect2 touch and connect then
begin

xsect +- area of intersection of prect and e--rect2;
I adjust area to exclude /2 of overlapping area I

area 4- (area + (area of xsect)/2)
(adjust perimeter to exclude abutting edges or 'A of perimeter of rect-term xsection)

perim 4- perim - (length of xsect + width of xsect);

end,

end; cap + cap + area x K.,.[layerp,,a I + perim x K.,m[1ayerp..]:

net's capacitance +- cap;
end,

84

Case 2

The rect is made into a terminal when the rect touches an overlap-rect (and does not touch

the cell boundary).

The external terminal created by Case 1 ccrresponds to the emboldened area in Situation I in

Figure 5.11. For Case 2, the emboldened area in Situation 2 of Figure 5.11 is the overlap-rect

that is created; an external terminal is created that has the coordinates of rectangle B.

Procedure 5.4 creates an electrical-connectivity graph to connect adjacent rects. The area

and perimeter adjustments are made using the graph. Since adjacent rects create two edges in

the graph in both directions, one-half of the area adjustment is made for each edge in the graph.

For Situation 2 of Figure 5.11, two graph edges are created between the overlapping rect and the

terminal. The perimeter adjustment in Procedure 5.4 also works for connections with terminals.

The abutment length of Situation I in Figure 5.11 is deducted from the perimeter (the embol-

dened area), and for Situation 2, the perimeter of the terminal (again, the emboldened area) is

deducted.

5.2.2. Hierarchical resistance extraction

The present implementation of iCHARM does not extract resistances hierarchically. In

iCHARM, substantial changes to the data structures and extraction procedures would have to be

done in order to implement it. Recal! that resistance extraction reports the signals of the design

in terms of node numbers, not net numbers. In other words, the netnum of the net struct is not

used, and the branchnode struct is used to identify the nodes. A branchnode is attached to a rec-

tangle, and rectangles exist in a net struct's rectlist.

At present, internal terminals are connected to net structs and instances. External terminals

are connected to net structs. To do resistance extraction in iCHARM, the external terminal structs

would have to be connected to each rect struct at 'he boundary of the cell, and internal terminals

would have to be connected to each rect that is connected to an instance. An example of this is

shown in Figure 5.12. This would be a major change to the program.

5.3. Hierarchical Power Bus Extraction

The techniques to do power bus extraction on a flat layout can also be extended to work on

a hierarchical layout. The method implemented in iCHARM will be sketched out here.

85

This internal terminal must connect to this rect

3 This external terminal must connect to this rect

Figure 5.12 - Terminal structs must be attached to rectangles for resistance extraction

First, every cell in the hierarchy is geometrically extracted. This creates the connections in

the data structures that connect the drain and source rects with their respective transistors.

Next, a procedure is run to mark the nets in every cell that are the power and ground nets.

The procedure is started on the top-level cell where the power and ground nets are first identified

by name. The internal terminals that are connected to the power / ground nets are found; tracing

in the data structures further, the corresponding external terminal of the instance's definition can

be found, which is connected to the definition cell's net. The power and ground net for the next

lower level is marked in this way. The procedure is then recursively called on every cell. The

cell's done flag is used in a way similar to ProcessOverlap() to limit the number of cells that are

visited.

Once all of the power and grcund nets are marked, the next procedure is executed in a

bottom-up order, i.e., as in CellExtracto, to do the actual power bus extraction. For each cell,

ExtractPwrBusO (in Procedure 4.5) is called on each marked net. In ExtractPwrBus() the

I
86 I

rectangles of the extracted power bus are printed out. In the current implementation of iCHARM,

the rectangles are printed in CIF format. In addition to this, the instantiation, or the "cell call"

(the C statement in CIF), of any instances that are connected to the power / ground net must be

output. This involves reproducing the "cell call" statement of the instance using the instance's

transform matrix. The instances must be included in the output so that the layout description of

the extracted power busses is hierarchical.

U
I
I
I
U
I
I
I
I
U
I
I
I
I

87

CHAPTER 6

RESULTS AND CONCLUSIONS

6.1. Test Results

Th; final implementation of iCHARM consists of some 11,000 lines of C code,1 spread over

18 source files and 4 header files, and runs under the UNIX 2 operating system. The input front-

end reads layout descriptions in either Oct or CIF format. During its development, iCHARM was

fortunate to have a full-chip layout available to provide test-cases.

6.1.1. The 2uchp test chip

The 2uchp design is a 10,000 transistor CMOS layout that was designed at the Rome Air

Development Center of the U.S. Air Force. It is so named because the top-most cell is named

"2uchp." The design was originally described in CIF, but it was converted to an equivalent Oct

description to test the Oct input module of iCHARM.

The 2uchp chip allowed iCHARM to be tested with realistic layout situations. The chip con-

sists of 74 different cells. The design hierarchy of the chip is shown in Figure 6.1. The major

cells of the chip are a ram (ram]), rom (rom2), alu (alun2), miscellaneous logic (P'RNG, chpqs,

prleak), and the padframe (2ufrm). Although most cells also contain mask geometries, in Fig-

ure 6.1 only the subcells are shown for each cell.

Since the majority of the transistors are in the ram] cell, it is the most difficult cell to

extract flat. In the ram] cell there are two instances of the mem blk cell, which is a 512-bit

static ram array.

1 This includes comment lines.

2 UNIX is a trademark of AT&T Corp.

88

2udip PRNG rom2 alun2 ram I
V, Cp V, Cp V, Cp, Ca Cp V, Cp
chp-qs PRNGc data alur2 ram-rowdI
prjleak Cp Ca 1220 V, Ca
2ufnn 2350 ram_ar2 Cp, Ca ram-rawa

PRNG Cp, Ca romcel.2 1310 V, CpU
roun2 1220 Ca Cp, Ca rain-dec na
alun2 Cp, Ca wcnt 1230 Ca, Cp
ram). 1830 Ca Ca rarnnand

V, Cp, Ca rom-rowda 1240 Ca, Cp
chp-qs 1310 V, Cp, Ca Cp, Ca rowd -edg

Cp, Ca Cp, Ca ram-nor4 1250 mem-bik
pr_leak PRNGa Ca Cp, Ca ram.ceI4

V, Ca V, Cp inv-add sp2 ramncellI
pr2ll 1310 V, Ca Cp Ca, Cp
leak-p Cp, Ca ram-dec-el. SP bik_b_edg

Ca tnip Ca alur3 bik I edg
2ufim Cp deccol 1220 cal-bikl

2u64p46 1220 V, Cp Cp, Ca V, Ca
syin2 Cp, Ca 1310 2310 ram-coldI

symi 1830 Cp, Ca Cp, Ca ram-raw
sym3 V, Cp, Ca tri_8 sp2 Cp

syml. 2310 V, Cp, Ca Cp ram-de.._naU
X2EPD Cp, Ca 1120 sp Cp, Ca

Cp, Ca spacer Cp, Ca 1680 ram-nand
X2TRI PRNGb 1130 Cp, Ca cal-sens

Cp, Ca Cp Cp, Ca 1660 V, Cp, Ca
PWR2 tnip 1140 Cp, Ca cal-bik-r
OPAD2 Cp Cp, Ca 1670B V, Ca

Cp, Ca 1220 raw-pul. Cp, Ca ram-caldI
GND2 Cp, Ca Cp, Ca 2rlb raM-raw

1830 Cp Cp
V, Cp, Ca 1220 ram-dec-na

2310 Cp, Ca Cp, Ca
Cp, Ca 1310 ram -nand

spacer Cp, Ca cal-sens

1230 V, Cp, Ca
Ca ram-buff

1660 V, Cp
Cp. Ca 1220I

1670B CpCa

Cp,Ca 1310
alun2s Cp, Ca
VI

Figure 6.1 - The hierarch,% (of the 2tichp chip

89

The 2uchp chip contains the "hard" case that was mentioned in Chapter 5: the 2ufrm cell is

a padframe cell which overlaps the other major cells (ram], rom2, alun2, PRNG, chp_qs, and

prleak). Another major cell, the alun2 cell, has overlapping instances. In alun2, the instance of

alun2s overlaps the other instances over most of their area. Therefore to extract the entire chip

hierarchically, it is important to avoid flattening the areas of overlap.

6.1.2. The 2uchp test results

The cells of the chip were used to test the functionality of iCHARM. All of the cells were

put through the flat extraction, parasitic extraction, power bus extraction, and hierarchical extrac-

tion modes of the extractor. Of most interest was the verification of the hierarchical extraction

capability and the performance comparison of the hierarchical mode versus the flat mode. The

test results for the larger cells of 2uchp are shown in Table 6.1.

Out of the 74 total cells, a number of leaf cells are simply connector or feed-through cells

and do not contain any transistors, and a number of cells are simple logic gates (nand, nor, inv).

To reduce the size of Table 6.1, none of these cells are reported. The second and third columns

of Table 6.1 report the number of transistors and nets for each cell. Next, the regularity of a cell

is defined as
regularity - number of instances of the cell

number of unique subcells

For instance, a cell may have one instance each of five subcells and four instances of another

subcell which results in a regularity factor of 9/6 = 1.5. The number of overlap-rects of a cell is

also reported in Table 6.1.

The performance results for flat and hierarchical extractions are reported in the form:

input/pre-process/final. All reported times are the user times taken by the process after the given

step has completed. The input time refers to the time taken to read the layout in. Some prepro-

cessing is done before the actual extraction; the time after the preprocessing step is reported. In

flat extraction, the preprocessing step is the flattening of the layout, and in hierarchical extrac-

tion, the overlap analysis is the preprocessing step. The final time is the total time taken by the

process. In other words, all times are reported relative to the start time of zero, therefore.

"0:04/0:12/2:13" means the process took 4 seconds of input time, then 8 seconds for preprocess-

ing, followed by 2:01 minutes to do the extraction.

9~

Table 6.1 - iCHARM Test Results with 2uchp Cells
Cell name Tran- Nets Reg- Overlap- Flat Hierarchical3

sistors ularity rects Time Mem. Time Mem.
coLsens 16 18 50.0 26 0:00/0:00/0:03 46.7 0:00/0:01/0:04 84.6
ram_cell 6 8 7.0 0 0:00/0:00/0:00 9.5 0:00/0:00/0:00 12.8
ram_cel4 24 19 4.0 0 0:00/0:00/0:02 29.9 0:00/0:00/0:01 29.1
ram_pand 8 22 20.5 72 0:00/0:00/0:01 16.9 0:00/0:00/0:01 25.5
ram-dec-na 10 7 25.0 47 0:00/0:00/0:00 15.1 0:00/0:00/0:01 24.5
ram-rowa 28 39 2.0 57 0:00/0:00/0:02 46.4 0:00/0:01/0:03 69.6U
mem..blk 3072 1122 58.7 1 0:00/0:07/4:47 3022.8 0:00/0:00/0:18 945.7
ram_rowd 448 145 18.5 18 0:01/0:02/0:39 502.0 0:01/0:01/0:11 393.3
alun2s 0 4 3.0 301 0:00/0:00/0:00 1.8 0:00/0:00/0:00 2.6
tri_8 14 16 40.0 1 0:00/0:00/0:01 28.3 0:00/0:00/0:02 57.0
romndec _el 4 8 9.0 10 0:00/0:00/0:00 4.4 0:00/0:00/0:00 6.0
nv-add 6 4 11.5 16 0:00/0:00/0:00 7.9 0:00/0:00/0:00 14.1

rom-nor4 24 26 70.0 51 0:00/0:00/0:02 27.1 0:00/0:00/0:01 39.6
romcel2 2 7 2.0 12 0:00/0:00/0:00 2.4 0:00/0:00/0:00 3.6
rom-ar2 256 305 80.0 370 0:00/0:00/0: 13 178.9 0:00/0:00/0:03 207.8

row..pul 2 6 2.5 6 0:00/0:00/0:00 3.0 0:00/0:00/0:00 5.5
rom_rowda 110o 55 17.7 49 0:01/0:01/0:07 106.3 0:01/0:01/0:05 134.9
data 256 49 128.5 75 0:01/0:01/0:19 226.6 0:01/0:03/0:15 459.5
PRNGc 47 28 4.6 4 0:01/0:01/0:06 76.7 0:01/0:01/0:06 72.2
OPAD2 23 5 172.5 4 0:01/0:01/0:03 96.4 0:01/0:02/0:07 149.7
X2TRI 34 10 215.0 1 0:01/0:01/0:04 124.7 0:01/0:03/0:09 179.4
X2IPD 16 5 126.0 1 0:00/0:01/0:02 74.5 0:00/0:01/0:04 105.3
cbp...qs 2 8 16.0 5 0:00/0:00/0:00 8.9 0:00/0:00/0:00 15.1I
2ufirm 922 176 9.0 1379 0:04/0:12/2:13 2429.7 0:04/0:09/3:32 6769.8
ram-row 18 27 1.3 58 0:00/0:00/0:02 33.0 0:00/0:00/0:02 54.3
ram_.cold 50 53 1.5 69 0:01/0:01/0:10 108.1 0:01/0:01/0:07 140.1
ram-.buff 12 9 3.5 54 0:00/0:00/0:02 35.4 0:00/0:00/0:01 35.9
cal_bik_r 400 213 10.3 10 0:01/0:03/1:20 840.9 0:01/0:02/0:11 308.3
col_bl_1 400 213 10.3 9 0:01/0:03/1:20 840.8 0:01/0:02/0:11 307.9
2rlb 40 28 4.5 10 0:01/0:01/0:06 71.4 0:00/0:01/0:05 73.3I
alur3 108 90 3.3 4 0:01/0:01/0:17 213.5 0:01/0:01/0:06 97.3
alur2 110 116 3.9 3 0:01/0:01/0:14 185.5 0:01/0:01/0:05 95.2

deccol 122 63 17.7 29 0:01/0:02/0:21 244.3 ~0:01/0:02/0:08 161.6U
trop 28 21 2.3 33 0:00/0:00/0:03 38.4 0:00/0:01/0:03 50.5
PRNGb 261 156 6.0 29 0:01/0:01/0:29 372.7 0:01/0:01/0:06 91.9
PRNGa 278 163 6.3 27 0:01/0:01/0:32 410.1 0:01/0:02/0:07 112.03
rami1 7404 2561 76.3 29 ??OM. 0:04/0:08/0:56 2071.5
alun2 378 205 28.0 100 0:02/0:04/0:50 603.4 0:02/0:04/0:57 2750.3
rom2 504 112 25.9 66 0:04/0:06/0:58 593.7 0:04/0:10/0:45 903.5
PRNG 586 332 9.4 22 0:01/0:03/1:09 859.8 0:02/0:03/0:24 938.5I
2ucbp 9796 3320 131.4 0 ??O.M. 0:21/1:36/13:.'8 14191.2

Input format: Oct format Parasitics extracted: Capacitance only3
Hardware: Vax 3500
Time (user) reported in units of minutes:seconds, see text for format Memory reported in units of kbytes-
O.Mi = Out of Memory (the process aborted)3

91

Since the memory allocation in iCHARM was handled manually, it was possible to monitor

the amount of memory that was allocated for each run of the program. The maximum amount of

memory that was allocated during the process is reported in Table 6.1.

6.1.3. Interpretation of the test results

In looking over the test results in Table 6.1, some interpretations and conclusions can be

formed from the data.

First of all, the overhead in the preprocessing step to handle overlap is minimal. In most

cases the time to process the overlap is less than the time to flatten the entire cell. A good exam-

ple of this is the 2ufrm cell, where it took 12 seconds to flatten but only 9 seconds to process the

overlap. Most cells in Table 6.1 take almost negligible time to process the overlap: from "zero"

(less than 1 second) to 2 seconds.

To compare the times for hierarchical extraction versus flat extraction, it makes sense to

discuss only the cells that have runtimes greater than 10 seconds. Measurement errors for the

runtimes less than 10 seconds are a large percentage of the total runtime, so the shorter results

cannot be trusted for comparisons. Of the results in Table 6. 1, there are 18 cells where the total

flat extraction time took longer than 10 seconds. These cells can be classified into three groups.

The best results show the advantages of hierarchical analysis: the hierarchical extraction

takes less time and less memory. This occurs for the largest number of cells, 11 cells in all:

(mem_blk, ram rowd, col_blk-r, col blk_1, alur3, alur2, deccol, PRNGb, PRNGa, ram],

2uchp). The extraction has a few overlap-rects, which means there is little or no overlap for the

cell. In fact, the mem_blk cell has virtually no overlap; therefore, the speed-up is almost 16-

fold, and one-third of the memory is used. For the ram] and 2uchp cells, hierarchical extraction

produces an extracted result where the flat analysis failed to produce any result.

When overlap is present, the results are less impressive; five cells still have faster hierarchi-

cal extraction times but more memory is actually used: from_at2, data, ramcold, ron2,

PRNG). All of the cells end up having significant lists of overlap-rects. More memory must be

used to calculate and create the overlap-rects. The extraction process itself is slowed since dur-

ing extraction each rect for the cell must be checked to see if it touches an overlap-rect.

Nevertheless, the savings due to hierarchy are great enough so that the runtime is still faster.

Finally there are two cells for which hierarchical analysis is worse in terms of both speed

and memory usage: {2ufrm, alun2). As mentioned before the padframe is the "hard" test-case

I
92 I

for hierarchical extractors, and the alun2 cell contains a significant amount of overlap. How-

ever, it does appear that for the 18 test-cases, most of the cells benefit from being extracted hier- 3
archically with the methods employed by iCHARM.

6.2. Future Extensions I
A number of extensions to the existing implementation of iCHARM as presented in this

thesis are possible.

6.2.1. Output results in Oct 3
At present, iCHARM reports the extracted results in the form of a Spice-format file. As dis-

cussed in the section on the Oct front-end, there is a need to write the extracted results back into 3
the Oct database. Such a system would have all of the advantages of a fully integrated system.

To implement such a feature, a "simulator" facet would be created that contains the extracted 3
circuit connectivity information; the target simulator would read this facet. To be successful, the

extractor and the target simulator would have to agree on a suitable simulator policy so that the 5
extracted information is complete, and the simulator would know where to expect certain data.

The Spice policy as shown in the Oct Tools manual [12] could be used as the first cut toward 3
developing a customized simulator policy.

6.2.2. Coupling capacitance 3
The parasitics computed for iCHARM are limited to the substrate capacitance of each net

and the interconnect resistance. The coupling capacitance between conductors of two nets

becomes more significant as the minimum feature size on a chip is made smaller. This causes

the sidewall or fringing-field capacitance components of conductors to become larger and thus

increases the coupling capacitance between conductors.

The major problem with computing the coupling capacitances of a circuit is that the process I
is computationally expensive. Since every rectangle of a net must be checked against every

other rectangle of the surrounding nets, a thorough and complete analysis is easily an O(N 2) I
process. In order to reduce the amount of computation and since coupling capacitance is

inversely proportional to the distance between two conductors, the coupling capacitance between I
rectangles that are beyond a reasonable proximity of one another is not calculated. However,

scanline algorithms are not very well-suited for the "proximity analysis" needed to compute

I

93

coupling capacitances. Other extraction algorithms - 4-D trees for example - are better suited

for the problem of finding all rectangles within a set separation distance from a given rectangle.

6.2.3. Multiprocessor implementation

There are two ways to speed up the circuit extraction process. The first has been exploited

in iCHARM: using hierarchy to eliminate the analysis of repeated cells. A second speed-up can

be gained by exploiting the time-parallelism of the extraction process, namely, to implement the

hierarchical extractor on a parallel machine. The goal in such an implementation would be to

schedule the extraction of one hierarchical cell using an available processor such that the compu-

tational load between processors would be balanced. Obviously, the extraction of the largest cell

of a design could take longer than all of the other cells combined. In addition to distributing the

extraction of many cells among processors, a capability to split the extraction of a single large

cell between processors would also be necessary.

6.2.4. Power bus extraction and modeling

The capacitance and resistance extraction and modeling done by the JET program for relia-

bility analysis and the resistance extraction mode of iCHARM basically accomplish the same task.

The obvious plan would be to combine the two programs. The JET program is customized to

analyze only power busses but is not as general in its approach as iCHARM. The JET program

splits up the rectangles of the power bus into a restricted set of primitive shapes that it can

model. It cannot analyze certain configurations if they cannot be decomposed into one of its

primitives. Therefore, iCHARM is more general, but not as accurate as JET.

To combine the two programs, iCHARM could do its rectangle decomposition step ad resis-

tance extraction for the areas of a power bus that do not correspond to a JET primiw',ve region.

This would add some flexibility to the modeling system.

6.3. Conclusions

This thesis began with the introduction of hierarchical design methods as a way to increase

productivity and reduce the complexity of the design task. Similarly, hierarchical design tools

reduce the unit of analysis from the entire chip to one cell at a time

Circuit extraction is defined as the transformation of ,yout ito circuit information. It is

the link between the design of ICs and their verification through simulation. In addition to veri-

fying the functionality of a layout, it is important to accurately model any unexpected parasitic

U
94

effects. The iCHARM program was developed to extract CMOS circuits with parasitics, using

hierarchy to reduce the time and memory required for the extraction. 3
To efficiently represent the input layout, iCHARM builds hierarchical data structures consist-

ing of cell and instance structures. The extractor reads the input layout in two formats: the CIF

format and Oct database format. The CIF format organizes the description of the layout in cells;

transformation matrices are used to describe how a cell is instantiated. The CIF format is meant 3
to be used as an interchange format to describe a finished layout; it is not meant to be used as a

design language or database. Cells described in the Oct format, which was developed at UC 3
Berkeley, can be part of an integrated design system built around a common database. Files in

the Oct format can be created by a program such as Vein, the standard Oct-tools graphical editor.

Application programs such as iCHARM can read Oct-format files by calling Oct access routines.

The geometric extraction step, in which the transistors and electrical nets of the circuit are 3
identified, is the basis of the extraction process. The data structure used to represent the layout

implies the algorithm that must be used for geometric extraction which also implies the perform- 3
ance and memory usage of the step. Three data structures were surveyed: 4-D trees, scanlines,

and comer-stitching. The 4-D trees are the most suitable for fast geometric queries typical of 3
interactive applications. There is some overhead in the technique to keep the tree balanced for

optimum performance. Scanlines are a simple technique since the underlying data structure is a

simple linked list of rectangles. Since all of the rectangles of the layout are analyzed in left-to-

right order in one big procedure, it is most suitable for batch processing of rectangles. Finally,

the comer-stitched data structuring technique optimizes the nearest neighbor query, but has

difficulty with a large number of layers.

The iCHARM program used an existing program as its basis which uses a scanline algorithm

for geometric extraction. The basic scanline technique is implemented by processing the inter-

secting rectangles in the AddToScanline0 routine, and the DeleteFromScanline0 routine is used

to do any final processing of each rectangle. Applications of the basic scanline algorithm are

shown for net and transistor extractions.

The parasitic extraction mode in iCHARM extracts the substrate capacitance of each net and 3
the resistance through each net. This results in a distributed RC model of each interconnection

net. A scanline technique is again used to create an electrical connectivity graph for the rectan- 3
gles of each net. The graph links each rectangle with its adjacent rectangles. The contribution

of each rectangle to the net's capacitance is calculated from the area and perimeter of the

U

95

rectangle. By identifying the knots and branches of the net, the resistance is calculated using the

resistance formulas along each branch.

The power bus extraction mode of iCHARM is used, along with the JET and CREST pro-

grams, to predict the reliability of a given chip. The mode extracts the power bus conductors

and splits and renumbers each power bus contact point. A scanline algorithm is employed to

collect "diffusion-islands" at each contact point.

Hierarchical extraction offers a savings in extraction time as well as memory usage. The

overlap of instances is the principal problem with the technique since it destroys the indepen-

dence of a previously extracted cell with its instantiation. Existing techniques for hierarchical

extraction either convert an overlapped design into an equivalent nonoverlapped one where

simpler techniques can be used for extraction, or the overlapping is dealt with directly. In this

case the "padframe" case causes the entire hierarchy to be flattened.

Terminal structs are used by iCHARM to extend the flat extraction procedure into a hierar-

chical one. Terminals allow cells to connect to nets outside of the cell instance. In order to han-

dle overlap, a preprocessing step is done to find all the unique situations in which a cell's

instances are overlapped. This creates overlap-rects for each cell. During extraction, external

terminals are created for any rect of the cell that touches an overlap-rect.

Capacitance adjustments for abutting and overlapping connections to internal terminals

must be done for hierarchical capacitance extraction. To implement hierarchical power bus

extraction, a preprocessing step is added to mark all the nets throughout the hierarchy that con-

nect to the power and ground nets of the top-level cell.

A full-chip layout was used to test the program. The overhead of the hierarchical pre-

processing step was minimal. The hierarchical extraction results showed that most cells have lit-

ie overlap, and most cells are extracted in less time and with less memory with hierarchical

methods.

I I

96 I
APPENDIX I

iCHARM USER MANUAL 3
U

This section consists of a user manual for the iCHARM Hierarchical CMOS Extraction pro- 3
gram. The capabilities of the program are given in Chapter 1 of this thesis. The first section of

the manual describes how to run the program and its command line options. The next section 3
describes the iCHARM-specific requirements for the CIF or Oct format input files. The iCHARM

program reads a technology file which describes the process-dependent parameters of each layer.

The format of the technology file is given in the next section, as well as some notes about which

layer names are required by the program.

A.I. Running iCIIARM

The usage string for the program is I
iCHARM -i (<ciffile> I <octcell:view>) [-h] [-r] [-t <techfile>1

[-p [<pwrbusfile>ll [-v pwrnamel [-g gndnamel

The Spice format output file is written on stdout. Any warning or error messages are 3
printed on stderr.

Only the -i flag and its argument must be specified. All other options are optional and I
default values will be assigned if a given option is not specified. Each option flag has the fol-

lowing meaning: 3
-i (<ciffile> I <octcell:v'iew>)

The input CIF file or Oct facet is specified with this option. This information must be

specified or the program will exit.

An Oct facet is assumed if the string following the -i flag has a colon (:) anywhere in it. In this I
case, the facet in the file "<octcel>/<view>/contents:" will be read. Both the cell and view

name must be specified; the contents facet is assumed. The facet specified will be used as the

top-level cell extracted.

U

97

A CIF format file is assumed if the <ciffile> string is specified without any colon character. The

final command before the End command in the CIF file must be a single call to the top-level cell

in the file. For example, if the cell (or symbol in CIF terminology) 57 is the top-level cell in the

hierarchy of a given CIF file, then the end of the file should resemble

DS 57;

DF;

C 57;

E

-h If this flag is specified, the extraction is done hierarchically: the output Spice file will have

.SUBCKT blocks for each hierarchical cell. By default (if the flag is not specified), the

extraction is done flat, with any hierarchy in the input flattened into a single level of hierar-

chy that contains all of the rectangles of the layout.

-r This flag controls the extraction of the parasitics of the interconnection nets. The substrate

capacitance of each net is always extracted. If the -r flag is specified, however, the resis-

tance through each net is also calculated and reported in the output file. This requires more

calculation, so the use of the -r option slows the performance of the extractor.

-t <techfile>

iCHARM assumes the existence of a technology file in the current directory. Since the

default name of the file is "tech," the program looks for such a file in the current directory.

The -t option changes the name of the technology file that the program uses to its argument,

".<techfile>."

-p [<pwrbusfile>]

iCHARM has a special option to extract the rectangles that make up the power bus nets

(Power and Ground). The power bus processing is done only when the -p option is

specified. If only the -p flag is specified, a CIF format file of the extracted power bus rectan-

gles is output to the default filename of "pwrbus.cif." If an argument is given along with

the -p flag, then the power bus file is named "<pwrbusfile>."

-v <pwrname> -g <gndname>

The two power and ground nets are recognized by their names: the default name for the

I
98

power net is "Vdd" and the default name for the ground net is "GND." The -v and -g options

allow the default names to be changed for the power net name and the ground net name, 3
respectively. A net with the power (ground) net name is given the reserved net number of

"1" ("0," respectively) in the output Spice file. The power bus extraction module that was 3
mentioned above identifies the two power bus nets that are extracted by the seme naming

and recognition mechanism.

A.2. Input Format

iCHARM accepts input files in either the CIF format or the Oct format. In so doing, there are 3
some iCHARM-specific extensions, options, and caveats that must be described.

A.2.1. CIF format

In CIF, user extension commands begin with the digit "9" that allow "tailor-made" options 3
specific to a program to be defined. The following user extension commands are recognized by

iCHARM: 3
9 <cellname>;

When this command occurs between a "DS" and a "DF" command, the cell being defined is 3
given the name of <ceilname>. If hierarchical extraction is done, <celname> is used to

name the cell's .SUBCKT in the output Spice file. 3
94 <label> <x> <y> <Iayername>;

The "94" command is used to define a label at the point <x>,<y> on the layer <layemame>. 3
Labels are used to name nets. When the extraction is done, the net that has a rectangle at

the point <x>,<y> on the layer <layemame> is given the name of <label>. At the very 3
minimum, the power bus nets should be named so that the power net recognition mecha-

nism described above will work. 3
Labels may be defined for all cells, but only labels in the top-level cell are actually used to

name nets. All other labels are parsed in the input file, but are ignored. This is done to reduce 3
the number of named nets and simplify tht output fle.

I

I

99

A.2.2. Oct format

Oct formal terminals correspond to the "94" commands in CIF files; that is, formal terminals

in a facet are used to create iCHARM labels. In addition, Oct labels (the "label" octObject) are

also used to create iCHARM labels.

A.2.3. Defining a new technology in Oct

The input Oct facet must have layer names that are accepted by iCHARM. The accepted

layer names are given in the next section. To do this, a new technology type has to be defined.

The Oct tools manual [121 documents the procedure to define a new technology, but the impor-

tant points will be covered here.

To create a new technology, the primary thing that has to be done is to create a facet named
"tap.views:<view>:contents." Using a pattern file that defines each layer, the tap.-views facet can

be created by the Oct-tools program "pat2tap". This facet has to be placed under a directory

with the name of the technology. For instance, to define a new technology with the name
"mosis" for physical (layout) editing, one would create the facet "tap.views:physical:contents"

under the directory "mosis."

The tap.views facet is used by Vein to determine how to display the various layers. The

display characteristics are determined by the attachments of the tap.views facet as shown in Fig-

ure A. 1. To display the layers in Vein (on a color display), Vein looks for a "GENERIC-COLOR"

bag attached to the "DISPLAY-LOOKS" bag that is attached to each layer in the tap.views facet.

To obtain a print-out of a facet, the "oct2ps" program may be used to produce a Postscript file

that displays the facet. To do so, oct2ps looks for a "Postscript-BW" bag in the "DISPLAY-

LOOKS" bag in the tap.views facet. A final note: in the Octtools 3.0 release, a layer named

"PLACE" must be defined in the tap.views facet or various tools will not work.

The entire directory for the new technology has to be under a directory that is called the

"default technology directory." This directory can contain the definitions for all of the technolo-

gies that are defined by the user. The -T option in many Oct programs takes the default techno-

logy directory as its argument. For instance, the -T is used in the vulcan program command line:

"vulcan -T -/octvem/technology mycell:physical"

100

facet tap.views I'I
prop TECHNOLOGY layer CAA "" layer PLACE

"mosis" I I I
bag DISPLAY-LOOKS

bag GENERIC-COLOR bag Postscript-BW

I I
bag PRIORITY bag PRIORITY3
bag RGB-VALS bag FILL-PATTERN
bag FILL-PATTERN bag BORDER-PATIERN
bag BORDER-PATTERN 3

Figure A.1 - The attachments for the facet tap.views for display with Vern and Oct2ps

U
The user's ,Xdefaults file has to be modified when a new technology is used. The

"vem.technology" variable has to be set to the default technology directory mentioned above, 3
and the "vem.deftechname" should be set to the name of the new technology.

A.3. Technology File3

The technology file in iCHARM defines the process parameters for each layer. The parser

that reads the file is crude so the file is kept simple, and no comments are accepted in the file.

An example of a valid technology file is given in Figure A.2.

The first section of the technology file determines which layers connect with other layers.

The first line has the total number of layers for the process. One line for each layer follows that

gives information about each layer. The first column is the number of other layers that the I
layer-for-this-line connects with. The second column should be "1" if the layer is a contact

layer. The rest of the columns have the layer numbers of the layers that this layer connects with. 3
The next section in the technology file describes the process parameters of each layer that

are used in calculating the extracted parasitic values. Again there is one line for each layer. The g

first column is the sheet resistance for the layer, in the units of ohms per square. The second I
I

101

number of layers, j, for each connection layer j:
that layer i connects
with is contact layer? the layer that i connects with

number of layers ,f94I 2017

I 2038

S00
for each layer i 4 0 5 7 8 9

i 2069

I 31715
418235
319651 0.001 0.0001 0.0

0.05 0.0005 0.0010.06 0.0006 0.001
0.0 0.0 0.0

for each layer i 0.002 0.00001 0.0
0.003 0.00001 0.0
0.0 0.0 0.03 0.0 0.0 0.0
0.0 0.0 0.0

sheet resistance, perimeter capacitance,
ohms/square i pFO.01 pim

area capacitance,
pF/O.01 pm 2

Figure A.2 - A sample technology file

column is the capacitance per area for the layer, in pico-farads per 0.01 micron 2. The third

3 column holds the value for the perimeter capacitance (capacitance per unit length) of the layer,

in pico-farads per 0.01 micron. The values shown in Figure A.2 are for a generic CMOS process

3 based on typical values from Weste [171.

I
I

I
102

A.4. Layer Names

1

The layer names that are recognized by iCHARM are, unfortunately, hard-coded into the

program. The names and their meaning are given in Table A. 1. The iCHARM program uses a

subset of the "standard" MOSIS CMOS layer names. All other layer names not found in Table A. 1 I

are ignored by iCHARM.

Table A.1 - iCHARM Layer Names 3
Layer name Meaning

CAA Active area (diffusion)

CPW P-wellI
CPG Polysilicon
CMF First-level metal
CMS Second-level metal
CCA Contact between CAA and CMF
CCP Contact between CPG and CMF
CVA Contact between CMF and CMS (via)

The CAA layer is used for both p-fets and n-fets. A P-well process is assumed here: N- 3
diffusion is formed when a P-well is over a section of active area (CAA) and P-diffusion is

assumed for active area rectangles without P-well areas. 3
I
I
I
I
I
I
I
I
I

103

REFERENCES

[1] K.P. Belkhale and P. Banerjee, "PACE: A parallel VLSI circuit extractor on the Intel hyper-
cube multiprocessor," Proceedings of the International Conference on Computer-Aided
Design, pp. 326-329, 1988.

[2] K.P. Belkhale and P. Banerjee, "PACE2: An improved parallel VLSI extractor with parameter
extraction," Proceedings of the International Conference on Computer-Aided Design, pp.
526-529, 1989.

[3] H. Cha, "Current density calculation using rectilinear region splitting algorithm for VLSI
metal migration analysis," M.S. thesis, University of Illinois at Urbana-Champaign,
Department of Electrical Engineering, in preparation.

[4] A. Gupta, "ACE: A circuit extractor," Proceedings of the 20th Design Automation Confer-
ence, pp. 721-725, 1983.

[5] P.M. Hall, "Resistance calculations for thin film patterns," Thin Solid Films, vol. 1, pp.
277-295, Mar. 1968.

[6] M. Horowitz and R.W. Dutton, "Resistance extraction from mask layout data," IEEE Tran-
sactions on Computer-Aided Design of Integrated Circuits and Systems, vol. CAD-2, no. 3,
pp. 145-150, July 1983.

[7] L. Kohn and S.W. Fu, "A 1,000,000 transistor microprocessor," International Solid-State
Circuits Conference Digest of Technical Papers, pp. 54-55, Feb. 1989.

[8] D. Marple, M. Smulders and H. Hegen, "Tailor: A layout system based on trapezoidal
comer stitching," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 9, no. 1, pp. 66-90, Jan. 1990.

[9] C. Mead and L. Conway, Introduction to VLSI Systems. Reading, MA:Addison-Wesley,
1980.

[10] F. Najm, R. Burch, P. Yang and I. Hajj, "CREST - a current estimator for CMOS circuits,"
Proceedings of the International Conference on Computer-Aided Design, pp. 204-207,
1988.I

I

I
104

[11] M.E. Newell and D.T. Fitzpatrick, "Exploitation of hierarchy in analyses of integrated cir- I
cuit artwork," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tents, vol. CAD-I, no. 4, pp. 192-200, Oct. 1982.

[121 Oct Tools Distribution 3.0, Electronics Research Laboratory, University of California,
Berkeley, 1989.

[13] J.B. Rosenberg, "Geographical data structures compared: A study of data structures sup-
porting region queries," IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. CAD-4, no. 1, pp. 53-67, Oct. 1985.

[14] W.S. Scott and J.K. Ousterhout, "Magic's circuit extractor," Proceedings of the 22nd I
Design Automation Conference, pp. 286-292, 1985.

[15] S.L. Su, "Extraction of MOS VLSI circuit models including critical interconnect parasitics," I
Ph.D. dissertation, University of Illinois at Urbana-Champaign, Department of Electrical
Engineering, 1987. 3

[16] T.G. Szymanski and C.J. Van Wyk, "Goalie: A space efficient system for VLSI artwork
analysis," IEEE Design and Test of Computers, vol. 2, no. 3, pp. 64-72, June 1985.

[17] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems Perspective.
Reading, MA:Addison-Wesley, 1985.

I
I
I
I
I
I
I
I
I

